Tabela porównawcza możliwości kamer termowizyjnych FLIR Seria-i
Model |
FLIR i3 |
FLIR i5 |
FLIR i7 |
Obraz |
|||
Rozdzielczość | 60 x 60 pikseli | 100 x 100 pikseli | 140 × 140 pikseli |
Całkowita liczba pikseli | 3600 | 10.000 | 19.600 |
Czułość termiczna | <0,15 °C | <0,1 ° C | |
Dokładność | +/-2% lub 2 °C | ||
Zakres temperatur | -4 º F do 482 º F (-20 º C do 250 º C) | ||
Kąt widzenia |
12,5 ° x 12,5 ° | 21 º x 21 º | 29 º x 29 º |
Focus | Autofocus | ||
Detektor | Niechłodzony mikrobolometr | ||
Ekran | 2,8" kolorowy LCD | ||
Frame Rate | 9 Hz | ||
Emisyjność | współczynnik wprowadzany płynnie w zakresie 0,1 do 1,0 |
||
Analiza |
|||
Termiczne Palety | Żelazo, Tęcza, Odcienie szarości |
||
Tryby pomiaru | Punktowy (centralny) | Punktowy (centralny); Obczar (minimum i maximum); Izoterma (powyżej / poniżej) | |
Przechowywanie plików |
|||
Typ pliku | Radiometryczne JPG (> 5000 zdjęć) | ||
Inny |
|||
Typ baterii / czas prazy |
Li-Ion /> 5 godz | ||
System ładowania | wbudowana ładowarka z zasilaczem sieciowym; ładowanie 3 godz do 90% pojemności | ||
Wymiary i waga | 223 x 79 x 85 mm / 365 g | ||
Spadek | 2 m (6,6 m) | ||
Szok | 25 g, IEC 60068-2-29 | ||
Wibracja | 2 g, IEC 60068-2-6 | ||
Gwarancja | 10 lat Detector / 5 lat bateria / 2 lata urządzenie i części |
* Uwaga: Dane techniczne mogą ulec zmianie bez uprzedzenia. Dostępność modeli urządzeń i akcesoriów jest uzależniona od regionalnych uwarunkowań rynkowych.
Nowe oprogramowanie FLIR Screen-EST zaprojektowane do użytku z kamerami termowizyjnymi FLIR wykorzystywanymi do pomiarów temperatury skóry. Oprogramowanie oferuje możliwość wykonywania szybkich pomiarów w miejscach o dużym natężeniu ruchu. Dzięki wykrywaniu twarzy i automatycznej kalibracji średnich temperatur skóry aplikacja wykrywa osoby, które wyróżniają się podwyższoną temperaturą skóry.
|
W czasie targów mogliście Państwo zobaczyć i przetestować najnowsze modele profesjonalnych kamer termowizyjnych i mierników na podczerwień marki FLIR Systems, anemometrów, balometru oraz wielu innych mierników do regulacji instalacji wentylacji renomowanej marki TSI Inc, jak również innych narzędzi kontrolno-pomiarowych (kamery inspekcyjne, pirometry termowizyjne, wilgotnościomierze).
Było nam bardzo miło spotkać się z Państwem i porozmawiać. Jeśli zainteresowała Państwa oferta naszej firmy serdecznie zapraszamy do kontaktu. Jako autoryzowany i bezpośredni dystrybutor renomowanych producentów urządzeń pomiarowych w Polsce chętnie pomożemy w doborze najlepszego rozwiązania dostosowanego do Państwa potrzeb.
Do zobaczenia za rok na kolejnej edycji Forum Wentylacja – Salon Klimatyzacja!
Z JAK DUŻEJ ODLEGŁOŚCI MOŻNA MIERZYĆ?
Kluczowy jest stosunek odległości do wielkości plamki pomiarowej
Jeśli niedawno została zakupiona kamera termowizyjna, możesz się zastanawiać, z jak dużej odległości można nią wykonywać pomiary. Enewntualnie chcesz kupić kamerę, ale nie masz pewności, która będzie dokładnie mierzyć cel i jednocześnie zmieści się w budżecie. Odpowiedź na pytanie „Z jak dużej odległości można mierzyć?” zależy od takich czynników, jak rozdzielczość, chwilowe pole widzenia (IFOV), obiektywy, wielkość obiektu i innych.
Można to porównać do badania wzroku w gabinecie lekarskim. Gdy spojrzysz na tablicę do badania wzroku z krzesła w gabinecie, możesz być w stanie zobaczyć litery w najmniejszym wierszu – ale z jakiej maksymalnej odległości będzie można je odczytać (czyli „zmierzyć” je)? Jeśli masz doskonały wzrok (20/20), możesz odczytać najmniejsze litery z większej odległości. W takim przypadku wzrok 20/20 odpowiadałby kamerze termowizyjnej o wysokiej rozdzielczości. Jeśli Twój wzrok nie jest doskonały, możesz poprawić go okularami (czyli dodać szkło powiększające do kamery) lub podejść bliżej tablicy do badania wzroku (czyli zmniejszyć odległość od celu).
Ważne jest zrozumienie, czym jest stosunek odległości do wielkości plamki pomiarowej. Stosunek odległości do średnicy plamki pomiarowej to wartość informująca o tym, jak daleko można być od celu o określonych wymiarach i nadal uzyskiwać dokładny pomiar temperatury.
W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury
Aby zapewnić najdokładniejszy pomiar temperatury, na celu powinno być skupionych jak najwięcej pikseli detektora kamery. Zapewni to więcej szczegółów na obrazie termowizyjnym. W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury. Im większa rozdzielczość kamery (większa liczba pikseli w celu), tym bardziej prawdopodobne jest uzyskanie dokładnych wyników z większej odlegości. Zoom cyfrowy nie poprawia dokładności, więc wyższa rozdzielczość lub wąskie pole widzenia ma kluczowe znaczenie.
Załóżmy, że chcesz uzyskać dokładny pomiar temperatury 20-milimetrowego celu znajdującego się w odległości 15 metrów od kamery termowizyjnej. Jak dowiedzieć się, czy dana kamera może to zrobić? Trzeba sprawdzić dane techniczne kamery – pole widzenia i rozdzielczość. Załóżmy, że rozdzielczość kamery wynosi 320 × 240, a obiektyw ma 24-stopniowe pole widzenia w poziomie.
IFOV jest rzutem kątowym jednego piksela detektora na obrazie w podczerwieni. Powierzchnia, jaką może widzieć każdy piksel, zależy od odległości od celu dla danego obiektywu.
Najpierw trzeba obliczyć IFOV w miliradianach (mrad) z następującego wzoru:
IFOV = (FOV/liczba pikseli*) × [(3,14/180)(1000)]
* Użyj liczby pikseli, która odpowiada polu widzenia Twojego obiektywu (w poziomie/ pionie)
Jako że obiektyw ma 24 stopnie FOV w poziomie, należy podzielić 24 przez poziomą rozdzielczość kamery w pikselach – w tym przypadku 320. Następnie trzeba pomnożyć tę liczbę przez 17,44, co jest wynikiem (3,14/180) (1000) z powyższego równania.
(24/320) × 17,44 = 1,308 mrad
Wiedząc, że IFOV wynosi 1,308 mrad, trzeba obliczyć IFOV w milimetrach z następującego równania:
IFOV (mm): (1,308/1000) × 15 000* mm = 19,62 mm
* Odległość od celu
Co oznacza ta liczba? Stosunek odległości do średnicy plamki pomiarowej wynosi 19,62:15 000. Ta wartość jest mierzalną wielkością jednego piksela (1 × 1). Mówiąc w uproszczeniu, wynik informuje, że kamera może zmierzyć plamkę pomiarową 19,62 mm z odległości 15 metrów.
Ten pomiar pojedynczego piksela nazywany jest „teoretycznym stosunkiem odległości do wielkości plamki pomiarowej ” (SSR). Niektórzy producenci podają teoretyczny stosunek odległości do średnicy plamki pomiarowej w danych technicznych produktów. Chociaż można to uznać za rzeczywisty stosunek odległości do średnicy plamki pomiarowej, jest to zwodnicze, ponieważ nie musi to być najbardziej dokładna wartość. Jest tak dlatego, że informuje tylko o temperaturze bardzo małego obszaru w obrębie pojedynczego piksela. Jak wspomniano wcześniej, w celu zapewnienia największej dokładności należy uzyskać jak najwięcej pikseli w celu. Jeden lub dwa piksele mogą wystarczyć, aby jakościowego ustalenia , że istnieje różnica temperatur, ale mogą nie wystarczyć do zapewnienia dokładnego odwzorowania średniej temperatury danego obszaru.
W idealnej sytuacji odwzorowywany cel powinien pokrywać co najmniej jeden piksel.W celu zapewnienia dokładniejszych odczytów należy pokryć większy obszar, aby uwzględnić dyspersję optyczną rzutowania.
Pomiar jednopikselowy może być niedokładny z różnych powodów:
Ze względu na zjawisko zwane dyspersją optyczną promieniowanie z bardzo małej powierzchni nie zapewni jednemu elementowi detektora wystarczająco dużo energii, aby umożliwić uzyskanie poprawnej wartości. Należy upewnić się, że gorący obszar odczytu wartości punktowej ma co najmniej 3 × 3 piksele. Wystarczy pomnożyć teoretyczny stosunek odległości do wielkości plamki pomiarowej w milimetrach przez trzy, co pozwoli uzyskać stosunek plamki pomiarowej 3 × 3 piksele zamiast 1 × 1. Taka wartość będzie dokładniejsza.
Po pomnożeniu IFOV w mm (19,62) przez 3 uzyskujemy 58,86 mm.
Oznacza to, że można zmierzyć obiekt o średnicy 58,86 milimetra z odległości 15 metrów.
A teraz załóżmy, że chcemy zmierzyć obiekt o średnicy 20 milimetrów. Z jakiej maksymalnej odległości można dokładnie zmierzyć powierzchnię tej wielkości? Trzeba zastosować mnożenie krzyżowe:
IFOV w mm: Odległość w mm
(15 m = 15 000 mm)
58,86:15 000
20 mm : x
15000*20 = 58,86*x
300 000/58,86 = x
x = 5096,8 mm, czyli około 5,1 m
Kamerą o rozdzielczości 320 × 240 pikseli można zmierzyć obiekt o średnicy 20 mm z odległości około 5 m od celu.
Ilustracja pola widzenia przy 2,6 mrad i 1,36 mrad. Udostępniona przez Infrared Training Center.
Inni producenci mogą nie używać tej wartości, gdy omawiają IFOV lub SSR, ale w praktyce zapewnia ona dokładniejszy odczyt temperatury anomalii.
Stosunek odległości do średnicy plamki pomiarowej jest ważny, ponieważ pomaga zrozumieć, czy kamera termowizyjna jest w stanie dokładnie mierzyć temperaturę z wymaganej odległości. Jeśli chcesz mierzyć małe cele z dużej odległości, znajomość stosunku odległości do wielkości plamki pomiarowej czyli odległości dokładnego pomiaru ma kluczowe znaczenie.
Jeśli planujesz badanie termograficzne, zastanów się, czy możesz podejść wystarczająco blisko celu, aby uzyskać dokładny odczyt. Dokładny znaczy tyle, co wystarczająco dobry dla prawidłowej interpretacji. Niekoniecznie nawet musi to oznaczać „w zakresie dokładności kamery”. Jeśli nie uwzględnisz stosunku odległości do średnicy plamki pomiarowej, możesz uzyskać odczyt odchylony o kilkadziesiąt, a nawet kilkaset stopni.
Seria E xx to seria kamer termowizyjnych ogólnego przeznaczenia, doskonale sprawdzajaca się zarówno w przemyśle jak i energetyce oraz budownictwie.
Do ogromnych zalet tej serii należy wysoka rozdzielczość, dotykowy wyświetlacz który przyspiesza pomiary i audyty, manualne ustawienie ostrości - dzieki temu obraz jest wyraźniejszy niż w przypadku kamer pozbawionych tej mozliwości (focus free - eX). Wymienne obietywy pozwalają stosować tą kamerę w zależności od przeznaczenia: wersja BX budownictwo - obiektyw standardowy lub szerokokątny, energeryka - obiektyw standardowy lub tele. Bogate funkcje zawarte w kamerze umożliają sporządzanie raportów na miejscu, łączenie się z siecią bezprzewodową.
Zestaw kamery E xx zawiera (w zależności od modelu): kamerę termowizyjną z obiektywem, przenośną walizkę na zestaw, baterię, pasek na rękę, kartę pamięci, osłonę obiektywu, certyfikat kalibracji, oprogramowanie FLIR Tools (kod do pobrania), instrukcja użytkownika, zasilacz z wymiennymi końcówkami, przewód USB, kabel wideo.
Tabelaryczne zestawienie funkcji i możliwości kamer serii Exx:
FLIR E40 | FLIR E40bx | FLIR E50 | FLIR E50bx | FLIR E60 | FLIR E60bx | |
Dokładność | ±2% lub 2°C | ±2% lub 2°C | ±2% lub 2°C | ±2% lub 2°C | ±2% lub 2°C | ±2% lub 2°C |
Rozdzielczość detektora | 19200 (160 x 120) | 19200 (160 x 120) | 43200 (240 x 180) | 43200 (240 x 180) | 76800 (320 x 240) | 76800 (320 x 240) |
Czułość termiczna | <0.07°C | <0.045°C | <0.05°C | <0.045°C | <0.045°C | <0.045°C |
Zakres pomiaru temperatury | -20°C do 650°C (-4°F to 1,202°F) | -20°C do 120°C (-4°F to 248°F) | -20°C do 650°C (-4°F to 1,202°F) | -20°C do 120°C (-4°F to 248°F) | -20°C do 650°C (-4°F to 1,202°F) | -20°C do 120°C (-4°F to 248°F) |
Wielkość wyświetlacza | 3.5”/Panoramiczny | 3.5”/Panoramiczny | 3.5”/Panoramiczny | 3.5”/Panoramiczny | 3.5”/Panoramiczny | 3.5”/Panoramiczny |
Wizjer | Nie | Nie | Nie | Nie | Nie | Nie |
Tryby pomiarowe | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T |
Punkty pomiarowe | 3 przesuwalne | 3 przesuwalne | 3 przesuwalne | 3 przesuwalne | 3 przesuwalne | 3 przesuwalne |
Częstotliwość odświeżania | 60 Hz | 60 Hz | 60 Hz | 60 Hz | 60 Hz | 60 Hz |
FOV | 25° × 19° | 25° × 19° | 25° × 19° | 25° × 19° | 25° × 19° | 25° × 19° |
FOV taki jak w obiektywie | Nie | Nie | Nie | Nie | Nie | Nie |
Opcjonalne obiektywy | 2: 15° Tele, 45° Szer. | 2: 15° Tele, 45° Szer. | 2: 15° Tele, 45° Szer. | 2: 15° Tele, 45° Szer. | 2: 15° Tele, 45° Szer. | 2: 15° Tele, 45° Szer. |
Ustawienie ostrości | Manualne | Manualne | Manualne | Manualne | Manualne | Manualne |
Ciągły auto-fokus | Nie | Nie | Nie | Nie | Nie | Nie |
Minimalna odległość ostrzenia | 0.4 m (1.31 ft.) | 0.4 m (1.31 ft.) | 0.4 m (1.31 ft.) | 0.4 m (1.31 ft.) | 0.4 m (1.31 ft.) | 0.4 m (1.31 ft.) |
Zdjęcie radiometryczne JPEG zapisane na kartę SD | Tak | Tak | Tak | Tak | Tak | Tak |
Film MPEG4 zapisany na kartę SD (nie radiometryczny) | Tak | Tak | Tak | Tak | Tak | Tak |
Palety | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) |
Oprogramowanie FLIR Tools | Tak | Tak | Tak | Tak | Tak | Tak |
Raport w kamerze | Nie | Nie | Nie | Nie | Nie | Nie |
Czas pracy na baterii | >4 godzin | >4 godzin | >4 godzin | >4 godzin | >4 godzin | >4 godzin |
Kamera wbudowana | 3.1 MP | 3.1 MP | 3.1 MP | 3.1 MP | 3.1 MP | 3.1 MP |
Wbudowane podświetlenie LED | Tak | Tak | Tak | Tak | Tak | Tak |
Ekran dotykowy | Tak | Tak | Tak | Tak | Tak | Tak |
Zoom cyfrowy | 2× | 2× | 4× | 4× | 4× | 4× |
Alarm izolacji | Nie | Tak | No | Tak | Nie | Tak |
Alarm punktu rosy | Nie | Tak | No | Tak | Nie | Tak |
Połączenie MeterLink® | Tak | Tak | Tak | Tak | Tak | Tak |
Wskaźnik laserowy | Tak | Tak | Tak | Tak | Tak | Tak |
Indykator wskaźnika na obrazie IR | Tak | Tak | Tak | Tak | Tak | Tak |
Kompas | Nie | Nie | Nie | Nie | Nie | Nie |
GPS | Nie | Nie | Nie | Nie | Nie | Nie |
Korekcja dla okna wziernikowego IR Window | Tak | Tak | Tak | Tak | Tak | Tak |
Delta T | Tak | Tak | Tak | Tak | Tak | Tak |
Obraz w obrazie | Stała wielkość PIP | Stała wielkość PIP | Dostosowanie PIP | Dostosowanie PIP | Dostosowanie PIP | Dostosowanie PIP |
Fuzja termiczna | Nie | Nie | Nie | Nie | Nie | Nie |
MSX™ Obrazowanie multispektralne | Tak | Tak | Tak | Tak | Tak | Tak |
Szkic na ekranie | Nie | Nie | Nie | Nie | Nie | Nie |
Szkic na zdjęciu IR | Nie | Nie | Nie | Nie | Nie | Nie |
Notatki tekstowe/głosowe | Tak | Tak | Tak | Tak | Tak | Tak |
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ | Tak | Tak | Tak | Tak | Tak | Tak |
Streaming video | Tak | Tak | Tak | Tak | Tak | Tak |
Zdalne sterowanie FLIR App Remote Control | Nie | Nie | Nie | Nie | Nie | Nie |
Odporność na upadek (2 metry/6.6 stóp) | Tak | Tak | Tak | Tak | Tak | Tak |
Waga (włącznie z bateriami) | 0.825 kg (1.82 lbs) | 0.825 kg (1.82 lbs) | 0.825 kg (1.82 lbs) | 0.825 kg (1.82 lbs) | 0.825 kg (1.82 lbs) | 0.825 kg (1.82 lbs) |
Czy można używać kamer termowizyjnych do wykrywania wirusa lub infekcji? Szybka odpowiedź na to pytanie brzmi: nie, ale można wykorzystać kamery termowizyjne do wykrywania podwyższonej temperatury ciała. Kamery termowizyjne FLIR były używane w miejscach publicznych, takich jak lotniska, terminale kolejowe, firmy, fabryki i koncerty, jako skuteczne narzędzie do pomiaru temperatury powierzchni skóry i identyfikacji osób z podwyższoną temperaturą ciała (EBT – z ang. Elevated Body Temperature).
|
Kamera termowizyjna musi być w stanie zobrazować wewnętrzny kącik oka (kanał łzowy) oka podczas badania pod kątem EBT. Poproś badanych o usunięcie okularów lub innej przeszkody oka przed badaniem.
Podczas kontroli pod kątem EBT za pomocą kamery termowizyjnej FLIR ważne jest, aby monitorować jedną osobę na raz, stojącą nie dalej niż 1-2 metry od kamery.
W czasie targów mogliście Państwo zobaczyć i przetestować najnowsze modele profesjonalnych kamer termowizyjnych i mierników na podczerwień marki FLIR Systems, anemometrów, balometru oraz wielu innych mierników do regulacji instalacji wentylacji renomowanej marki TSI Inc, jak również innych narzędzi kontrolno-pomiarowych (kamery inspekcyjne, pirometry termowizyjne, wilgotnościomierze).
Było nam bardzo miło spotkać się z Państwem i porozmawiać. Jeśli zainteresowała Państwa oferta naszej firmy serdecznie zapraszamy do kontaktu. Jako autoryzowany i bezpośredni dystrybutor renomowanych producentów urządzeń pomiarowych w Polsce chętnie pomożemy w doborze najlepszego rozwiązania dostosowanego do Państwa potrzeb.
Do zobaczenia za rok na kolejnej edycji Forum Wentylacja – Salon Klimatyzacja!
Najnowsza seria profesjonalnych kamer termowizyjnych FLIR EXX!
FLIR E53, E75, E85, E95
Zaawansowane kamery termowizyjne FLIR E75, E85 i E95 oraz model podstawowy E53 nowej serii Exx to wygodne i poręczne rozwiązania, oferujące najwyższą czułość i obiektyw o rzeczywistym polu widzenia 42°*. Ekran LCD o przekątnej 4 cale pozwala na dostrzeżenie subtelnych oznak wad budynku i przenikania wilgoci. Dzięki wbudowanym narzędziom, takim jak laserowe ustawianie ostrości*, pomiar pola powierzchni** i komunikacja Wi-Fi seria FLIR Exx pomoże udokumentować ilościowe i jakościowe wycieki powietrza, wilgoć i inne problemy z budową.
*Modele E75, E85, E95, **Modele E85, E95
>> Pobierz kartę techniczną kamer serii EXX
PO WIĘCEJ INFOMACJI NA TEMAT Exx (E53 E75 E85 E95) KLIKNIJ W POSZCZEGÓLNE ZAKŁADKI PONIŻEJ:
Znajdowanie ukrytych wad
Odkrywanie trudnych do znalezienia wad elewacji i miejsc zawilgoceń
Szybkie dokumentowanie problemów
Raportowanie problemów w konstrukcjach budynków celem dochodzenia roszczeń ubezpieczeniowych, do audytów przed podpisaniem polisy oraz kontroli budynków
Efektywniejsze pomiary
Wszystkie cztery kamery FLIR serii Exx zostały zaprojektowane tak, aby przyspieszyć i ułatwić pracę oraz zwiększyć jej bezpieczeństwo
Kamery FLIR Serii E95, E85, E75, E53 oferują:
Funkcje wg kamery |
E53 |
E75 |
E85 |
E95 |
Rozdzielczość obrazu termowizyjnego |
240 x 180 (43 200 pikseli) |
320 x 240 (76 800 pikseli) |
384 x 288 (110 592 pikseli) |
464 x 348 (161 472 pikseli) |
UltraMax® |
— |
307 200 pikseli |
442 368 pikseli |
645 888 pikseli |
Zakres mierzonych temperatur |
Od -20°C do 120°C (od -4°F do 248°F)
Od 0°C do 650°C (od 32°F do 1200°F) |
Od -20°C do 120°C (od -4°F do 248°F)
Od 0°C do 650°C (od 32°F do 1200°F)
Opcjonalnie Od 300°C do 1000°C (od 572°F do 1830°F) |
Od -20°C do 120°C (od -4°F do 248°F)
Od 0°C do 650°C (od 32°F do 1200°F)
Od 300°C do 1200°C (od 572°F do 2192°F) |
Od -20°C do 120°C (od -4°F do 248°F)
Od 0°C do 650°C (od 32°F do 1200°F)
Od 300°C do 1500°C (od 572°F do 2732°F) |
Ostrość obrazu |
Ręczna |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
Zdjęcia poklatkowe (w podczerwieni) |
— |
— |
— |
Od 10 sekund do 24 godzin |
Pole widzenia (FoV) |
24° x 18° |
42° x 32° (obiektyw 10 mm), 24° x 18° (obiektyw 18 mm), 14° x 10° (obiektyw 29 mm) |
42° x 32° (obiektyw 10 mm), 24° x 18° (obiektyw 18 mm), 14° x 10° (obiektyw 29 mm) |
42° x 32° (obiektyw 10 mm), 24° x 18° (obiektyw 18 mm), 14° x 10° (obiektyw 29 mm) |
Identyfikacja obiektywu |
— |
Automatyczna |
Automatyczna |
Automatyczna |
Laserowy pomiar powierzchni obszaru |
— |
— |
Tak |
Tak |
Laserowy pomiar odległości |
— |
Tak, prezentowany na ekranie |
Tak, prezentowany na ekranie |
Tak, prezentowany na ekranie |
Dostępne ustawienia pomiarów |
Brak pomiaru, punkt centralny, gorący punkt, zimny punkt, 3 punkty, różnica gorący punkt-punkt* |
Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2 |
Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2 |
Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2 |
Punkt pomiarowy |
3 w trybie na żywo |
1 w trybie na żywo |
3 w trybie na żywo |
3 w trybie na żywo |
Obszar |
1 w trybie na żywo |
1 w trybie na żywo |
3 w trybie na żywo |
3 w trybie na żywo |
Obraz w obrazie (PiP) |
Wypośrodkowany obszar w podczerwieni na obrazie w świetle widzialnym |
Zmienny rozmiar i położenie |
Zmienny rozmiar i położenie |
Zmienny rozmiar i położenie |
Funkcje wspólne |
||||
Typ detektora / wielkość piksela |
Niechłodzony mikrobolometr, 17 μm |
|||
Czułość termiczna / NETD |
<0,04°C przy 30°C (86°F), obiektyw 24° |
|||
Zakres widmowy |
7,5 – 14,0 μm |
|||
Częstotliwość obrazu |
30 Hz |
|||
Liczba F |
f/1.3, obiektyw 24° |
|||
Powiększenie cyfrowe |
1-4x ciągłe |
|||
Prezentacja i tryby obrazu |
||||
Wyświetlacz |
Ekran dotykowy LCD 4'', 640 x 480 pikseli z funkcją automatycznego obrotu |
|||
Aparat cyfrowy |
5 MP, 53° x 41° FOV |
|||
Palety kolorów |
Żelaza, Szarości, Tęczy, Arktyczna, Lawa, Tęczy wysoki kontrast |
|||
Tryby zobrazowania |
Podczerwień, wizualne, MSX®, obraz w obrazie |
|||
MSX® |
Nakłada szczegóły z aparatu foto na pełnej rozdzielczości obraz termowizyjny |
|||
Analiza pomiarów |
||||
Dokładność |
±2°C (±3,6°F) lub ±2% wartości odczytu, przy temperaturze otoczenia od 15°C do 35°C (59°F do 95°F) i temperaturze obiektu powyżej 0°C (32°F) |
|||
Alarmy |
Związane z wilgocią, izolacją, pomiarami |
|||
Alarm kolorowy (izoterma) |
Powyżej/ poniżej/ interwał/ kondensacja/ izolacja |
|||
Kompas, GPS |
Tak, automatyczne oznaczanie obrazu |
|||
METERLiNK® |
Tak, kilka odczytów |
|||
Wskaźnik laserowy |
Tak, osobny przycisk |
|||
Zapis obrazów |
||||
Nośnik pamięci |
Wymienna karta DS (8 GB) |
|||
Format pliku obrazu |
Standardowy JPEG z danymi pomiarowymi |
|||
Nagrywanie i transmitowanie sygnału wideo |
||||
Zapis pomiarowej sekwencji termowizyjnej |
Rejestracja danych pomiarowych w czasie rzeczywistym (.csq) |
|||
Niepomiarowa sekwencja termowizyjne lub foto |
H.264 na kartę pamięci |
|||
Przesyłanie pomiarowego wideo termowizyjnego |
Tak, przez UVC lub Wi-Fi |
|||
Przesyłanie niepomiarowego sygnału wideo w podczerwieni |
H.264 lub MPEG-4 przez Wi-Fi MJPEG przez UVC lub Wi-Fi |
|||
Interfejsy komunikacyjne |
USB 2.0, Bluetooth, Wi-Fi, DisplayPort |
|||
Wyjście wideo |
DisplayPort przez USB typu C |
|||
Dodatkowe dane |
||||
Typ akumulatora |
Akumulator litowo-jonowy, ładowany w kamerze lub zewnętrznej ładowarce |
|||
Czas pracy akumulatora |
Ok. 2,5 h w temperaturze otoczenia 25°C (77°F) i przy typowych warunkach eksploatacji |
|||
Zakres temperatur pracy |
Od -15°C do 50°C (5°F do 122°F) |
|||
Zakres temperatur przechowywania |
Od -40°C do 70°C (-40°F do 158°F) |
|||
Wstrząsy/ Drgania/ Obudowa; Bezpieczeństwo |
25 g / IEC 60068-2-27, 2 g / IEC 60068-2-6, IP 54 / IEC 60529; EN/UL/CSA/PSE 60950-1 |
|||
Masa/ Wymiary |
1 kg (2,2 lb) / 27,8 x 11,6 x 11,3 cm (11,0 x 4,6 x 4,4'') |
|||
Zawartość opakowania |
||||
|
Kamera termowizyjna z obiektywem, akumulator (2 szt.), ładowarka, osłona przodu, osłona obiektywu, paski (na rękę i nadgarstek), sztywne etui, smycze, zaślepki obiektywu (przednia i tylna), ściereczka do czyszczenia obiektywu, karta SD 8 GB, śrubokręt Torx, kable (USB 2.0 A do USB typu C, USB typu C do HDMI, USB typu C do USB typu C, USB typu C do HDMI) |
Nowa seria zaawansowanych kamer termowizyjnych FLIR Exx
Kamery termowizyjne dla elektryków i mechaników - FLIR Exx
Kamery termowizyjne zasosowanie w budownictwie - nowa seria FLIR E95 E85 E75
Kamery termowizyjne Exx posiadają WYSOKĄ CZUŁOŚĆ termiczną ważną w budownictwie - nowa seria FLIR E95 E85 E75 E53
Lilnk do strony FLIR: http://www.flir.eu/instruments/e75-e85-e95/
Zapraszamy do kontakty po najlepszy sprzet w najlepszej cenie !
Funkcje wg kamery |
E53 |
E75 |
E85 |
E95 |
Rozdzielczość obrazu termowizyjnego |
240 x 180 (43 200 pikseli) |
320 x 240 (76 800 pikseli) |
384 x 288 (110 592 pikseli) |
464 x 348 (161 472 pikseli) |
UltraMax® |
— |
307 200 pikseli |
442 368 pikseli |
645 888 pikseli |
Zakres mierzonych temperatur |
od -20°C do 120°C (od -4°F do 248°F) od 0°C do 650°C (od 32°F do 1200°F) |
od -20°C do 120°C (od -4°F do 248°F) od 0°C do 650°C (od 32°F do 1200°F) Opcjonalnie od 300°C do 1000°C (od 572°F do 1830°F) |
od -20°C do 120°C (od -4°F do 248°F) od 0°C do 650°C (od 32°F do 1200°F) od 300°C do 1200°C (od 572°F do 2192°F) |
od -20°C do 120°C (od -4°F do 248°F) od 0°C do 650°C (od 32°F do 1200°F) od 300°C do 1500°C (od 572°F do 2732°F) |
Ostrość obrazu |
Ręczna |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
Zdjęcia poklatkowe (w podczerwieni) |
— |
— |
— |
Od 10 sekund do 24 godzin |
Pole widzenia (FoV) |
24° x 18° |
42° x 32° (obiektyw 10 mm), 24° x 18° (obiektyw 18 mm), 14° x 10° (obiektyw 29 mm) |
42° x 32° (obiektyw 10 mm), 24° x 18° (obiektyw 18 mm), 14° x 10° (obiektyw 29 mm) |
42° x 32° (obiektyw 10 mm), 24° x 18° (obiektyw 18 mm), 14° x 10° (obiektyw 29 mm) |
Identyfikacja obiektywu |
— |
Automatyczna |
Automatyczna |
Automatyczna |
Laserowy pomiar powierzchni obszaru |
— |
— |
Tak |
Tak |
Laserowy pomiar odległości |
— |
Tak, prezentowany na ekranie |
Tak, prezentowany na ekranie |
Tak, prezentowany na ekranie |
Dostępne ustawienia pomiarów |
Brak pomiaru, punkt centralny, gorący punkt, zimny punkt, 3 punkty, różnica gorący punkt-punkt* |
Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2 |
Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2 |
Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2 |
Punkt pomiarowy |
3 w trybie na żywo |
1 w trybie na żywo |
3 w trybie na żywo |
3 w trybie na żywo |
Obszar |
1 w trybie na żywo |
1 w trybie na żywo |
3 w trybie na żywo |
3 w trybie na żywo |
Obraz w obrazie (PiP) |
Wypośrodkowany obszar w podczerwieni na obrazie w świetle widzialnym |
Zmienny rozmiar i położenie |
Zmienny rozmiar i położenie |
Zmienny rozmiar i położenie |
Funkcje wspólne |
||||
Typ detektora / wielkość piksela |
Niechłodzony mikrobolometr, 17 μm |
|||
Czułość termiczna / NETD |
<0,04°C przy 30°C (86°F), obiektyw 24° |
|||
Zakres widmowy |
7,5 – 14,0 μm |
|||
Częstotliwość obrazu |
30 Hz |
|||
Liczba F |
f/1.3, obiektyw 24° |
|||
Powiększenie cyfrowe |
1-4x ciągłe |
|||
Prezentacja i tryby obrazu |
||||
Wyświetlacz |
Ekran dotykowy LCD 4'', 640 x 480 pikseli z funkcją automatycznego obrotu |
|||
Aparat cyfrowy |
5 MP, 53° x 41° FOV |
|||
Palety kolorów |
Żelaza, Szarości, Tęczy, Arktyczna, Lawa, Tęczy wysoki kontrast |
|||
Tryby zobrazowania |
Podczerwień, wizualne, MSX®, obraz w obrazie |
|||
MSX® |
Nakłada szczegóły z aparatu foto na pełnej rozdzielczości obraz termowizyjny |
|||
Analiza pomiarów |
||||
Dokładność |
±2°C (±3,6°F) lub ±2% wartości odczytu, przy temperaturze otoczenia od 15°C do 35°C (59°F do 95°F) i temperaturze obiektu powyżej 0°C (32°F) |
|||
Alarmy |
Związane z wilgocią, izolacją, pomiarami |
|||
Alarm kolorowy (izoterma) |
Powyżej/ poniżej/ interwał/ kondensacja/ izolacja |
|||
Kompas, GPS |
Tak, automatyczne oznaczanie obrazu |
|||
METERLiNK® |
Tak, kilka odczytów |
|||
Wskaźnik laserowy |
Tak, osobny przycisk |
|||
Zapis obrazów |
||||
Nośnik pamięci |
Wymienna karta DS (8 GB) |
|||
Format pliku obrazu |
Standardowy JPEG z danymi pomiarowymi |
|||
Nagrywanie i transmitowanie sygnału wideo |
||||
Zapis pomiarowej sekwencji termowizyjnej |
Rejestracja danych pomiarowych w czasie rzeczywistym (.csq) |
|||
Niepomiarowa sekwencja termowizyjne lub foto |
H.264 na kartę pamięci |
|||
Przesyłanie pomiarowego wideo termowizyjnego |
Tak, przez UVC lub Wi-Fi |
|||
Przesyłanie niepomiarowego sygnału wideo w podczerwieni |
H.264 lub MPEG-4 przez Wi-Fi MJPEG przez UVC lub Wi-Fi |
|||
Interfejsy komunikacyjne |
USB 2.0, Bluetooth, Wi-Fi, DisplayPort |
|||
Wyjście wideo |
DisplayPort przez USB typu C |
|||
Dodatkowe dane |
||||
Typ akumulatora |
Akumulator litowo-jonowy, ładowany w kamerze lub zewnętrznej ładowarce |
|||
Czas pracy akumulatora |
Ok. 2,5 h w temperaturze otoczenia 25°C (77°F) i przy typowych warunkach eksploatacji |
|||
Zakres temperatur pracy |
Od -15°C do 50°C (5°F do 122°F) |
|||
Zakres temperatur przechowywania |
Od -40°C do 70°C (-40°F do 158°F) |
|||
Wstrząsy/ Drgania/ Obudowa; Bezpieczeństwo |
25 g / IEC 60068-2-27, 2 g / IEC 60068-2-6, IP 54 / IEC 60529; EN/UL/CSA/PSE 60950-1 |
|||
Masa/ Wymiary |
1 kg (2,2 lb) / 27,8 x 11,6 x 11,3 cm (11,0 x 4,6 x 4,4'') |
|||
Zawartość opakowania |
||||
|
Kamera termowizyjna z obiektywem, akumulator (2 szt.), ładowarka, osłona przodu, osłona obiektywu, paski (na rękę i nadgarstek), sztywne etui, smycze, zaślepki obiektywu (przednia i tylna), ściereczka do czyszczenia obiektywu, karta SD 8 GB, śrubokręt Torx, kable (USB 2.0 A do USB typu C, USB typu C do HDMI, USB typu C do USB typu C, USB typu C do HDMI) |
Odzwiedź iBros technic na Forum Wentylacja – Salon Klimatyzacja 2020
W dniach 3-4 marca 2020 roku firma iBros technic weźmie udział w 18 Edycji Targów Forum Wentylacja – Salon Klimatyzacja 2020, które są najważniejszym wydarzeniem w branży wentylacyjnej, klimatyzacyjnej i chłodniczej.
|
Miejsce targów:
Centrum Targowo-Kongresowe Global EXPO
ul. Modlińska 6D, 03-216 Warszawa
Nr stoiska iBros technic: 119
Godziny:
3 marca 2020: godz. 09.00 – 17.00
4 marca 2020: godz. 09.00 – 16.00
Termografia w testowaniu układów elektronicznych
FLIR ETS320 to przystępne cenowo rozwiązanie pozwalające na ulepszanie projektów płytek drukowanych, skracanie czasu testowania i oceny urządzeń. Zarówno w pracach badawczo-rozwojowych, jak i w testowaniu produktów, ciepło może być ważnym wskaźnikiem funkcjonowania systemu. Dzięki ETS320 inżynierowie i technicy mogą przeprowadzić testy, gromadzić dokładne i miarodajne dane w ciągu kilku sekund oraz szybko je analizować.
>> Karta techniczna FLIR ETS320
SKRÓCENIE CZASU TESTOWANIA
FLIR ETS320 eliminuje konieczność testowania termicznego metodą prób i błędów. Szybkie wykrywanie rozgrzanych elementów pozwala identyfikować miejsca, w których układy mogą ulec awarii.
Czułość wykrywania różnic temperatur mniejszych niż 0,06°C
Szeroki zakres temperatur, od -20°C do 250°C, umożliwiający mierzenie generowanego ciepła i jego rozpraszanie
Możliwość pomiaru małych elementów, do rozmiaru punktu 170 μm na piksel
USPRAWNIONY PROJEKT PRODUKTU
Przy użyciu FLIR ETS320 można wprowadzać usprawnienia do projektu oraz skracać czas opracowywania produktów, ponieważ urządzenie wykrywa wady projektowe, które ujawniają się w postaci ciepła.
Czujnik podczerwieni 320 x 240 umożliwia bezdotykowy pomiar temperatury w 76 800 punktach
Szerokie rzeczywiste pole widzenia 45° pozwala wykonywać wstepne skanowanie całego produktu, aby zidentyfikować potencjalne problemy
Dokładność pomiaru ±3°C ułatwia kontrolę jakości i testy fabryczne płytek drukowanych
PRZEZNACZENIE - PRACA W LABORATORIUM
ETS320 jest przeznaczony do przeprowadzania testów laboratoryjnych bez użycia rąk. Uproszczenie funkcji pozwala użytkownikom skoncentrować się na pracy, zamiast na obsłudze przycisków.
Dołączone mocowanie statywu ułatwia i przyspiesza ustawienie
Wyraźny 3-calowy wyświetlacz natychmiast pokazuje odczyty termowizyjne
Oprogramowanie FLIR Tools+ do natychmiastowej analizy, m.in. pomiru temperatury w czasie
NAJWAŻNIEJSZE CECHY
Rozdzielczość podczerwieni 320 x 240 (76 800 pikseli)
Czytelny 3-calowy wyświetlacz LCD
Pole widzenia 45°
Dokładność pomiarów ±3%
W zestawie oprogramowanie FLIR Tools+
DANE TECHNICZNE
Omówienie systemu |
ETS320 |
Rozdzielczość obrazu termowizyjnego |
320 x 240 (76 800 pikseli) |
Typ detektora |
Niechłodzony mikrobolometr |
Zakres widmowy |
7,5 - 13,0 μm |
Czułość termiczna / NETD |
< 0.06°C |
Pole widzenia (FOV) |
45° x 34° |
Stała odległość ostrości |
70 mm ± 10mm |
Liczba F |
1,5 |
Rozmiar punktu przy min. ostrość obrazu |
170 μm |
Częstotliwość obrazu |
9 Hz |
Analiza pomiarów |
|
Zakres mierzonych temperatur |
od -20°C do 250°C |
Dokładność |
±3°C lub ±3% wartości odczytu, przy temperaturze otoczenia od 10°C do 35°C |
Punkt pomiarowy |
Punkt w centrum obrazu |
Obszar |
Ramka maks./min. |
Korekcja emisyjności |
Zmienna od 0,1 do 1,0 |
Tabela emisyjności |
Tabela wcześniej zdefiniowanych materiałów |
Korekcja pozornej temperatury odbitej |
Automatyczna, oparta o wprowadzoną wartość temperatury odbitej |
Zapis obrazów |
|
Formaty pliku obrazu |
Standardowy pomiarowy JPEG, z 14-bitowymi danymi |
Przesyłanie sygnału wideo |
|
Przesył pomiarowego sygnału termowizyjnego |
W pełni dynamiczny do komputera (FLIR Tools/Tools+) za pośrednictwem złącza USB |
Przesył niepomiarowego sygnału termowizyjnego |
Nieskompresowane, kolorowane wideo za pośrednictwem złącza USB |
Złącza do komunikacji danych |
|
Złącza |
USB Micro: Przesyłanie danych między urządzeniami i komputerami PC oraz Mac |
System zasilania |
|
Typ akumulatora |
Akumulator Li-ion, ładowany bez wyjmowania z kamery |
Czas pracy akumulatora |
Ok. 4 h w temperaturze otoczenia 25°C i przy typowych warunkach eksploatacji |
Czas ładowania |
2,5 godziny do 90% pojemności |
Dodatkowe dane |
|
Wyświetlacz |
3-calowy, kolorowy LCD 320 x 240 pikseli |
Zakres temperatur pracy |
Od 10°C do 40°C |
Zakres temperatur przechowywania |
Od -40°C do 70°C |
Dyrektywy i przepisy |
|
Obudowa, uderzenia, drgania |
IP 40 (IEC 60529) |
Masa kamery, w tym Akumulator |
575 g |
Wymiary kamery (dł. x szer. x wys.) |
22 x 15 x 30 cm |
Zawartość zestawu FLIR ETS320 |
|
Lista elementów |
Kamera, mocowanie, statyw, zasilacz, kabel USB, oprogramowanie FLIR Tools+ |
FLIR Seria T800 jest nowym standardem w zakresie narzędzi do zapobiegawczej kontroli w branżach elektromechanicznej, produkcyjnej i budowlanej. FLIR T840 i T860 z funkcją Inspection Routing przyspiesza zbieranie danych i raportowanie, pomagając użytkownikom planować przeglądy, a następnie porządkować zdjęcia i dane według lokalizacji. Zintegrowany wizjer okularu, jasny 4-calowy kolorowy wyświetlacz LCD oraz przemyślana ergonomiczna konstrukcja umożliwiają inspektorom wygodne przegląd urządzeń pod kątem oznak awarii, nawet w trudnych warunkach oświetleniowych. Zaawansowane funkcje, takie jak automatyczne dostrojenie poziomu kontrastu za jednym dotknięciem ekranu i autofocus wspomagany laserowo, zapewniają, że kamera za każdym razem wykonuje dokładne pomiary temperatury. Zachowaj stały czas pracy poprzez regularne czynności konserwacyjne dzięki tej elastycznej i innowacyjnej kamerze IR.
Karta techniczna kamer termowizyjnych FLIR Seria T800
PO WIĘCEJ INFOMACJI NA TEMAT FLIR SERIA T800 KLIKNIJ W POSZCZEGÓLNE ZAKŁADKI PONIŻEJ:
POPRAW WYDAJNOŚĆ PRACY
Wbudowana funkcja kierowania pomiarami oraz nowe oprogramowanie FLIR pomagają w gromadzeniu istotnych danych oraz zarządaniu nimi
UNIKAJ KOSZTOWYCH AWARII I USZKODZEŃ KOMPONENTÓW
Sprawdzaj temperaturę urządzeń i systemów pod dowolnym kątem, w każdych warunkach oświetleniowych
SZYBKO PODEJMUJ ISTOTNE DECYZJE
Oszczędzaj czas i szybciej udostępniaj dane, aby zwiększyć wydajność w terenie
DANE TECHNICZNE
Imaging and optical data |
T840 |
T860 |
IR resolution |
464 x 348 (161 472 pixels, 645 888 with UltraMax®) |
640 x 480 (307 200 pixels, 1 228 800 with UltraMax®) |
Detector pitch |
17 μm |
12 μm |
Object temperatura range |
-20°C to 120°C (-4°F to 148°F); 0°C to 650°C (32°F to 1202°F); 300°C to 1500°C (572°F to 2732°F) |
-20°C to 120°C (-4°F to 148°F); 0°C to 650°C (32°F to 1202°F); 300°C to 2000°C (572°F to 3632°F) |
Digital zoom |
1-6x continuous |
1-8x continuous |
Macro Mode (24° lens option) |
71 μm min. focus distance |
50 μm min. focus distance |
Detector date |
||
Detector type and pitch |
Uncooled microbolometer |
|
Thermal sensivity/NETD |
<30 mK @ 30°C (42° lens) |
|
Spectral range |
7.5 – 14.0 μm |
|
Image frequency |
30 Hz |
|
Lens identification |
Automatic |
|
F-number |
f/1.1 (42° lens) f/1.3 (24° lens), f/1.5 (14° lens), f/1.35 (6° lens) |
|
Focus |
Continuous with laser distance meter (LDM), One-shot LDM, One-shot contrast, manual |
|
Minimum focus distance |
42° lens: 0.15 m |
|
Programmable buttons |
2 |
|
Image presentation |
||
Display |
4-inch, 640 × 480 pixel touchscreen LCD with auto-rotation |
|
Digital camera |
5 MP with built-in LED photo/video lamp |
|
Color paletts |
Iron, Gray, Rainbow, Arctic, Lava, Rainbow HC |
|
Image modes |
Infrared, visual, MSX®, Picture-in-picture |
|
Picture-in-Picture |
Resizable and movable |
|
UltraMax® |
Activated in menu and processed in FLIR Tools® |
|
Measurement and analysis |
||
Accuracy |
±2°C (±3.6°F) or ±2% of reading |
|
Spotmeter and area |
3 each in live mode |
|
Measurement presets |
No measurement, Center spot, Hot spot, Cold spot, User Preset 1, User Preset 2 |
|
Laser pointer |
Yes |
|
Laser distance meter |
Yes; dedicated button, displays distance on-screen |
|
On-screen area measurement |
Yes; calculates area inside measurement box in m² or ft² |
|
Annotations |
||
Inspection Routing |
File created in FLIR Thermal Studio Pro using FLIR Route Creator plug-in |
|
Voice |
60 sec. recording added to still images or video via built in mic (has speaker) or via Bluetooth® |
|
Text |
Predefined list or touchscreen keyboard |
|
Image Sketch |
Infrared images, from touchscreen |
|
GPS |
Automatic image tagging |
|
METERLiNK® |
Yes; connects to METERLiNK-enabled FLIR meters |
|
Image storage |
||
Storage media |
Removable SD card |
|
Image file format |
Standard JPEG with measurement data included |
|
Time lapse (Infrared) |
10 sec to 24 hrs |
|
Video recording and streaming |
||
Radiometric IR video recording |
Real-time radiometric recording (.csq) |
|
Non-radiometric IR or visual video |
H.264 to memory card |
|
Radiometric IR video streaming |
Compressed, over UVC |
|
Non-radiometric IR video streaming |
H.264, MPEG-4 over Wi-Fi; MJPEG over UVC or Wi-Fi |
|
Communication interfaces |
USB 2.0, Bluetooth, Wi-Fi, DisplayPort |
|
Video out |
DisplayPort |
|
Additional data |
||
Languages |
21 |
|
Battery type |
Li-ion battery, charged in camera or on separate charger |
|
Battery operation |
Approximately 4 hours at 25°C (77°F) |
|
Operating temperature range |
-15°C to 50°C (5°F to 122°F) |
|
Shock/Vibration/Encapsulation |
25 g (IEC 60068-2-27) / 2 g (IEC 60068-2-6) / IP54 |
|
Safety |
EN/UL/CSA/PSE 60950-1 |
|
Weight (including battery) |
1.4 kg (3.1 lbs) |
|
Size (l × w × h, lens vertical) |
150.5 × 201.3 × 84.1 mm (5.9 × 7.9 × 3.3 in) |
|
Package contents |
||
Infrared camera, lens, front and rear lens caps, cleaning cloth, small eyecup, rechargeable battery (2 ea.), charger power supply, 15 W/3 A power supply, straps (lens cap, neck), cables (USB 2.0 A to USB Type-C, USB Typ |
OKIENKA Z ANODYZOWANEGO ALUMINIUM LUB STALI NIERDZEWNEJ Z NAKRĘTKĄ PIRMA-LOCK
Okienka inspekcyjne FLIR IRW pozwalają na szybkie i wydajne inspekcje osprzętu elektrycznego, eliminując konieczność zdejmowania osłon lub otwierania szafek.
Okienka podczerwieni zapewniają także dodatkową barierę między użytkownikiem i urządzeniem podłączonym do prądu, zmniejszając ryzyko łuku elektrycznego. Pomagają one również w spełnieniu wymagań normy NFPA 70E i mogą pozwolić na zmniejszenie ilości niezbędnego sprzętu ochrony osobistej (PPE).
Montaż okienek jest bardzo prosty. Ich stałym elementem jest pokrywa z zawiasami ułatwiającymi otwieranie. Dzięki temu nie ma luźnych części, które można by upuścić, pomylić lub zgubić.
Proponujemy okienka ze standardowej anodyzowanej ramy aluminiowej antykorozyjnej. Jeśli konstrukcje z mieszanych metali mogą być problematyczne, oferujemy także rozwiązanie z trwałej stali nierdzewnej. Pozwoli to uniknąć korozji galwanicznej wskutek kontaktu stali nierdzewnej z ramą okna.
BEZPIECZNA PRACA
Unikanie zdarzeń z łukiem elektrycznym
- Zachowanie osłon pozwala ustanowić barierę ochronną między inspektorem i urządzeniem pod napięciem oraz zapobiec wpadaniu śrub czy nakrętek do szafek elektrycznych
- Spełnianie norm bezpieczeństwa NFPA 70E przez okienka inspekcyjne serii IRW to gwarancja bezpiecznej pracy
- Częstsze inspekcje pozwalają zapewnić, że sprzęt jest w dobrym stanie, i zmniejszyć prawdopodobieństwo zdarzeń
WIĘKSZA EFEKTYWNOŚĆ
Większa wydajność i wyższy zwrot z inwestycji
- Usunięcie konieczności zdejmowania osłon lub otwierania szafek pozwala na przeprowadzenie inspekcji przez jedną osobę, co daje oszczędność czasu i pracy
- Może to także zmniejszyć liczbę warstw odzieży ochronnej niezbędnej do założenia przez inspektora
- Zastosowanie szerokopasmowego, kryształowego okienka w podczerwieni, które przepuszcza wskaźniki laserowe i światło pozwala na inspekcje wizualne, termiczne oraz w trybie MSX®
SKRÓCENIE PRZESTOJÓW
Łatwy montaż bez odłączanych części
- Do wykonania jednego niezbędnego otworu montażowego wystarczy standardowy przebijak
- Nakrętka wieńcowa PIRma-Lock™ przyspiesza montaż okienka oraz automatycznie je uziemia i blokuje
- Wersja ze stali nierdzewnej pozwala uniknąć styku różnych metali, co zapobiega korozji
DANE TECHNICZNE:
Model/rozmiar |
Okienko IRW-2C/2S — rozmiar 2 cale |
Okienko IRW-3C/3S — rozmiar 3 cale |
Okienko IRW-4C/4S — rozmiar 4 cale |
Typ środowiska wg NEMA |
Typ 4/12 (zewnętrzne/wewnętrzne) |
Typ 4/12 (zewnętrzne/wewnętrzne) |
Typ 4/12 (zewnętrzne/wewnętrzne) |
Zakres napięcia |
Dowolne |
Dowolne |
Dowolne |
Samoczynne uziemienie |
Tak |
Tak |
Tak |
Maksymalna temperatura robocza |
260°C/500°F |
260°C/500°F |
260°C/500°F |
Materiał korpusu — model IRW-xC |
Anodyzowane aluminium |
Anodyzowane aluminium |
Anodyzowane aluminium |
Materiał korpusu — model IRW-xS |
Stal nierdzewna AISI 316 |
Stal nierdzewna AISI 316 |
Stal nierdzewna AISI 316 |
Materiał uszczelki |
Silikon |
Silikon |
Silikon |
Materiał elementów konstrukcyjnych |
Stal |
Stal |
Stal |
Rozmiar |
|||
Wysokość całkowita |
85,5 mm (3,36 cala) |
107,4 mm (4,22 cala) |
136,5 mm (5,37 cala) |
Szerokość całkowita |
73 mm (2,87 cala) |
99 mm (3,89 cala) |
127,44 mm (5,01 cala) |
Grubość całkowita |
25,5 mm (1,00 cala) |
26,86 mm (1,05 cala) |
29,25 mm (1,15 cala) |
Wymagana średnica otworu (znamionowa) |
60,3 mm (2 3/8 cala) |
88,9 mm (3 1/2 cala) |
114,3 mm (4 1/2 cala) |
Przebijak Greenlee |
76BB |
739BB |
742BB |
Zalecana maks. grubość panelu |
3,2 mm (1/8 cala) |
3,2 mm (1/8 cala) |
3,2 mm (1/8 cala) |
Specyfikacje układu optycznego |
|||
Średnica optyczna |
50 mm (1,97 cala) |
75 mm (2,95 cala) |
95 mm (3,74 cala) |
Średnica otworu |
45 mm (1,77 cala) |
69 mm (2,71 cala) |
89 mm (3,50 cala) |
Obszar widzenia |
1590 mm² (2,46 cala²) |
3739 mm² (5,79 cala²) |
6221 mm² (9,64 cala²) |
Maksymalna temperatura układu optycznego |
1355,6°C (2474°F) |
1355,6°C (2474°F) |
1355,6°C (2474°F) |
Klasy i testy |
|||
Zgodność komponentów ze standardami UL (UL 50 V) |
Tak |
Tak |
Tak |
Klasa środowiska UL 50/NEMA |
Typ 4/12 |
Typ 4/12 |
Typ 4/12 |
Test odporności na łuk elektryczny, IEC 62271-200 (KEMA)* |
5 kV, 63 kA dla 30 cykli przy 60 Hz |
5 kV, 63 kA dla 30 cykli przy 60 Hz |
5 kV, 63 kA dla 30 cykli przy 60 Hz |
Stopień ochrony IP, IEC 60529 (TUV)* |
IP67 |
IP67 |
IP67 |
Test wibracji, IEC 60068-2-6 (TUV)* |
Odporność na wibracje 100 m/s² |
Odporność na wibracje 100 m/s² |
Odporność na wibracje 100 m/s² |
Test wilgotności, IEC 60068-2-3 (TUV)* |
Urządzenie odporne na skrajną wilgotność |
Urządzenie odporne na skrajną wilgotność |
Urządzenie odporne na skrajną wilgotność |
Test mechaniczny, ANSI/IEEE C37.20.2 część A3.6 (TUV)* |
Osłona odporna na uderzenia i obciążenia |
Osłona odporna na uderzenia i obciążenia |
Osłona odporna na uderzenia i obciążenia |
Maksymalna wytrzymałość na wyrywanie |
657 kg (1450 lbs) |
1655 kg (3650 lbs) |
1678 kg (3700 lbs) |
Certyfikacja CSA, C22.2 nr 14 lub 508 |
Tak |
Tak |
Tak |
*Wyniki testu dotyczą tylko modeli IRW-2C, IRW-3C i IRW-4C.
Zobacz kartę techniczną FLIR IRW