>> Pobierz kartę techniczną systemu FLIR SV87-KIT
ZWIĘKSZ WYDAJNOŚĆ Przeglądaj dane i wykresy trendów w czasie rzeczywistym Przewiduj uszkodzenia mechaniczne, zanim one wystąpią, dzięki automatycznej analizie drgań ZAPEWNIAJ BEZPIECZNĄ PRACĘ Ogranicz potrzebę wymiany baterii czujnika (4 lata żywotności), minimalizując bezpośredni kontakt z maszynami
SZYBCIEJ ANALIZUJ DANE Przeglądaj próbki danych, które są automatycznie pobierane co 90 sekund i przechowywane do dalszej analizy Przegląd Przyspieszenie / zwalnianie ±32 g Format danych Wyeksportowany plik CSV Wyświetlanie W aplikacjach mobilnych i aplikacjach Windows® - temperatura, siła g (x, y, z) i przyspieszenie (x, y, z). Dane na żywo, wykresy trendów, dane historyczne Wymiary Bramka: 5,41 × 4,94 × 4,94 cm (2,11 × 1,93 × 1,93 cala); Czujnik: 6,5 × 2,5 × 2,7 cm (2,54 × 0,98 × 1,05 cala) Obsługiwane systemy operacyjne Aplikacja iOS: 9.0 lub nowsza Aplikacja Android ™: 7.0 lub nowsza Aplikacja Windows®: Windows 10 z procesorem Intel® Core ™ i3 lub lepszym Typ czujnika Zdalne, stałe czujniki wibracji i kontaktowe czujniki temperatury (SV87) Gwarancja 3-year warranty Waga Bramka: 66 g (0.15 lb); Czujnik: 62 g (0.14 lb) Zgodność i certyfikaty Certyfikacja ETL, IC, FCC, CE, RCM Połączenie i komunikacja Wskaźniki Diody LED wskazują zasilanie, alarm czujnika i stan Wi-Fi WiFi IEEE 802.11 b/g/n 2.4 GHz Warunki środowiskowe Wysokość 2000 m Test upadku Zaprojektowany na 1 m (3,28 stopy) EMC EN 301 489-1/-17; EN 55032/EN 55024; EN 61000-3-2/-3; FCC część 15C, część 15B Enkapsulacja Bramka: IP40; Czujnik: IP67 Wilgotność (pracy i przechowywania) 10% do 95% wilgotności względnej (RH) bez kondensacji Zakres temperatury pracy Bramka: -25 do 65 ° C (-13 do 149 ° F); Czujnik: od -30 do 80 ° C (od -22 do 176 ° F) Widmo radiowe 2,4 GHz (Wi-Fi i Bluetooth) Wstrząsy i wibracje Czujnik: ± 32 g Zakres temperatur przechowywania Bramka: -25 do 65 ° C (-13 do 149 ° F); Czujnik: od -30 do 80 ° C (od -22 do 176 ° F) Pomiary i analiza Zakres częstotliwości 10 Hz do 1 kHz Zasilanie Napięcie AC Bramka: 100 V do 240 V AC, 50/60 Hz Żywotność baterii (podczas pracy) Czujnik: 4 lata (w zależności od użytkowania) Typ Baterii Czujnik: bateria litowa 3,6 V. Wskazanie niskiego poziomu baterii Czujnik: czerwona dioda LED Nośniki Typ pamięci W Bramce: pamięć Flash; W systemie Windows: sprzęt komputerowy Pojemność przechowywania W Bramce: 32 MB (około 5 dni danych dla 4 czujników); W systemie Windows: Ograniczone przez sprzęt komputerowy Interfejs systemu Alerty Gdy zostanie przekroczony określony przez użytkownika próg wibracji lub temperatury, wysyłany jest alert ostrzegawczy lub e-mail W zestawie Bramka GW65 do monitorowania drgań, 4 złącza AC Gateway do gniazdek w USA / UE / UK / AUS, 4 zdalne czujniki wibracji / temperatury SV87 z taśmą samoprzylepną, skrócona instrukcja obsługi, dostęp do oprogramowania do konfiguracji i wizualizacji Najnowsze dane techniczne są dostępne na stronie www.flir.com Cechy i zalety
Regularnie monitoruj wibracje i temperaturę, aby podejmować właściwe decyzje
Zminimalizuj narażenie na niebezpieczne środowiska i trudno dostępne miejsca
Uzyskaj szybsze informacje dotyczące stanu maszyn produkcyjnych
Specyfikacja
Specyfikacja techniczna FLIR SV87-KIT:
http://www.flir.com/testwarranty/
Dane techniczne mogą ulec zmianie bez powiadomienia.
Profesjonalne mierniki cęgowe FLIR CM72/CM74
Mierniki cęgowe FLIR CM72 600A AC i CM74 600A AC/DC ułatwiają dostęp do okablowania w trudno dostępnych miejscach i są wyposażone we wszystkie funkcje pomiarowe, które są potrzebne do zaawansowanego wykrywania i usuwania usterek. Dzięki wąskim cęgom i mocnemu oświetleniu LED, użytkownicy mierników CM72 i CM74 mogą łatwiej wykonywać pomiary w ciemnych, wypełnionych przewodami panelach i szafkach. Kompaktowe rozmiary i lekkość tych urządzeń sprawiają, że można nosić je wszędzie w tylnej kieszeni spodni. Zaawansowane funkcje elektryczne takie jak automatyczny wybór zakresu, pomiar rzeczywistej wartości skutecznej napięcia i natężenia prądu, pomiar przy niskiej impedancji, pomiar prądu rozruchowego (tylko CM74), tryb VFD (tylko CM74) oraz wejście do podłączenia opcjonalnej elastycznej sondy pomiarowej, oznaczają że CM72 i CM74 wyposażono we wszystkie funkcje niezbędne użytkownikom do utrzymania konkurencyjności i uzyskiwania prawidłowych odczytów.
ŁATWY DOSTĘP ZA POMOCĄ CĘGÓW I PRZENOŚNOŚĆ
Ten miernik zabierzesz ze sobą wszędzie i wykonasz pomiary w trudno dostępnych miejscach
• Wąskie cęgi ułatwiają dostęp do okablowania w pełnych przewodów panelach i szafkach
• Dzięki płaskiej konstrukcji cęgów, miernik można łatwo nosić w tylnej kieszeni spodni
• Podwójne jasne diody LED o dużej mocy pomagają znaleźć cel w warunkach słabego oświetlenia
WSZYSTKIE POTRZEBNE FUNKCJE ELEKTRYCZNE
Reagowanie na współczesne wyzwania, precyzja odczytu
• Zaawansowane funkcje elektryczne, takie jak: pomiar rzeczywistej wartości
skutecznej, pomiar przy niskiej impedancji, tryb VFD (tylko CM74),
pomiar prądu rozruchowego (tylko CM74), pomiar diod bez zmiany połączeń z możliwością wyłączenia funkcji
• Zakres pomiarowy można rozszerzyć do 3000 A AC za pomocą akcesoriów Flex Clamp TA72 i TA74 (dostępne oddzielnie)
• Min. / maks., HOLD i automatyczne wyłączanie z możliwością wyłączenia tej funkcji
GODNY ZAUFANIA PROJEKT
Solidna konstrukcja i akcesoria, które ułatwiają znajdowanie i usuwanie usterek
• W zestawie znajdują się pozłacane końcówki pomiarowe o wysokiej jakości w izolacji silikonowej
• Wyświetlacz LCD z dużymi cyframi i jasnym podświetleniem
• Podwójne, gumowane i wytłaczane uchwyty zapewniające pewny chwyt
SPECYFIKACJA TECHNICZNA
W ramach wielu projektów charytatywnych np. dla potrzebujących rodzin rumuńskich ArcelorMittal opracował rozwiązania oparte na konstrukcji domów ze stali. Domy muszą być proste, bezpieczne, przyzwoite, a przede wszystkim dobrze izolowane. To waśnie tam kamera termowizyjna FLIR odgrywa bardzo ważną rolę. Specjaliści w zakresie badań i rozwoju ArcelorMittal Liège wykorzystują kamery termowizyjne FLIR w celu optymalizacji tego rozwiązania mieszkaniowego.
Ponad 1,1 miliarda ludzi na całym świecie żyje w nieodpowiednich warunkach mieszkaniowych. Centrum Narodów Zjednoczonych dla Osiedli Ludzkich (UNCHS) szacuje, że istnieje potrzeba stworzenia 21 milionów nowych mieszkań każdego roku. Jedną z organizacji, która zajmuje się rozwiązaniem tego problemu jest Habitat for Humanity. Ich celem jest budowanie prostych, przyzwoitych i niedrogich domów na całym świecie. ArcelorMittal postanowił pomóc Habitat for Humanity w osiągnięciu tego celu poprzez zastosowanie rozwiązań opartych na konstrukcji ze stali dla potrzebujących rumuńskich rodzin.
ArcelorMittal jest największym na świecie producentem stali w ponad 60 krajach, działający we wszystkich głównych światowych rynkach stalowych - włączając rynek samochodowy, budowlany, artykułów gospodarstwa domowego oraz opakowań. Zajmuje wiodącą pozycję w dziedzinie badań i rozwoju oraz technologii, jak również posiada znaczne złoża surowców i sieć dystrybucji.
"Dobry Dom"
W trakcie trzech miesiący rozwoju powstał prototyp o nazwie "Casa Buna", co w języku rumuńskim oznacza "Dobry Dom". Ten prototyp składa się z dwupiętrowego domu dla czterech rodzin, który został łatwo skonstruowany przez niewykwalifikowanych lub pół-wykwalifikowanych wolontariuszy i ma żywotność co najmniej 20 lat. Model ten wykorzystuje uproszczoną metodę projektowania dla lekkich konstrukcji stalowych, który został opracowany przez ArcelorMittal Liège Research w Belgii.
Prototyp został zbudowany w zakładzie ArcelorMittal w Pantelimon, w Bukareszcie. Wykorzystuje on lekką konstrukcję ramową ze stali, stalowy system odprowadzania wody deszczowej i okładzinę elewacyjną stalową z pomalowanej części walcowanej.
Domy mają być przyjazne dla środowiska, gdyż wyniki konstrukcji stalowej mają bardziej trwałą strukturę, która jest bardziej trwała niż w innych modelach o podobnej cenie. Mogą być również łatwo zdemontowane, rozebrane i prawie wszystkie materiały można poddać recyklingowi. Domy te są odporne na trzęsienia ziemi i zgodne z europejskimi normami odporności na ogień.
Szczegółowea kontrola termograficzna
ArcelorMittal poszukuje także modelu, który będzie energooszczędny ze względów ekologicznych i ekonomicznych, ale również, musi zapewnić komfort biorąc pod uwagę fakt, że temperatura na zewnątrz w Rumunii może spaść do -20 °C. Prototyp musiał zostać dokładnie sprawdzony. To było zadanie Franciszka Lamberga, eksperta termografii w ArcelorMittal Liège Research.
"Tu, w Centrum Badawczym w Liège używamy kamery termowizyjnej podczas budowy do prób izolacji, ale także dla testów ścinania w warunkach laboratoryjnych."
Kamerę termowizyjną Lamberg wykorzystywał do audytu energetycznego prototypu Casa Buna - była to kamera termowizyjna FLIR S65 .
"Używam tego aparatu regularnie i to naprawdę świetne narzędzie do audytów energetycznych. Urządzenie jest lekkie, kompaktowe, łatwe w użyciu i zapewnia dokładnie te dane, które są potrzebne do tego typu kontroli. "
Wiodąca w branży jakość obrazu i funkcje specjalne
Kamera termowizyjna FLIR S65 zawiera detektor mikro-bolometryczny, który wytwarza obrazy termiczne o rozdzielczości 320 x 240 pikseli. Obecnie FLIR Systems nie sprzedaje tego modelu aparatu. Został on zastąpiony przez kamerę termowizyjną FLIR B660 o rozdzielczości 640 x 480, o czułości poniżej 30 mK (0,03 ° C). Najlepsza termowizja oferuje nowoczesną technologię, czyli geo-odniesienie, komentarze, funkcja nagrywania głosu i obrazu termalnego w obrazie. To wszystko zawiera najlepsza kamera termowizyjna służąca do inspekcji budowlanych na rynku. Jednak audyty energetyczne wymagają więcej niż tylko dobrago aparatu do badań termograficznych.
"Potrzeba odpowiedniego szkolenia i dobrego oprogramowania. Bez odpowiedniego treningu można bardzo łatwo wyciągnąć fałszywe wnioski. Oprogramowanie ma również kluczowe znaczenie, ponieważ pozwala analizować dane termiczne w najdrobniejszych szczegółach. "
Wady izolacji
Dane termiczne zebrane przez Lamberga wykazały, że prototyp miał kilka początkowych wad konstrukcyjnych izolacji. Lamberg udowodnił, że w ramach okiennych oraz w wewnętrznych ścianach działowych wykonanie izolacji było niedoskonałe.
"Znaleźliśmy kilka mostków termicznych w trakcie kontroli. Mostek termiczny jest to obszar o mniejszej izolacji. Ciepło podąża drogą najmniejszego oporu. Często ciepło powoduje "zwarcie" przez element, który ma znacznie wyższą przewodność niż otaczający go materiał. Jest to tak zwany mostek termiczny ".
Na szczęście problemy z izolacją łatwo było rozwiązać.
"Po uwzględnieniu zmian została stworzona nowa wersja. Po powtórnej kontroli kamery termowizyjne wykazały, że nowy prototyp nie wykazywał żadnych mostków termicznych".
Lamberg jest bardzo zadowolony ze wsparcia FLIR. Jakość aparatu, obsługa posprzedażowa – ten cały pakiet oferuje właśnie FLIR.
"Kamera termowizyjna FLIR S65 jest nadal używana przez Lamberga i doskonale się sprawdza. Ale jeśli Lamberg będzie potrzebował dodatkowej kamery termowizyjnej, jego wybór dostawcy aparatu będzie oczywisty. To będzie FLIR. "
Odzwiedź iBros technic na Forum Wentylacja – Salon Klimatyzacja 2020
W dniach 3-4 marca 2020 roku firma iBros technic weźmie udział w 18 Edycji Targów Forum Wentylacja – Salon Klimatyzacja 2020, które są najważniejszym wydarzeniem w branży wentylacyjnej, klimatyzacyjnej i chłodniczej.
|
Miejsce targów:
Centrum Targowo-Kongresowe Global EXPO
ul. Modlińska 6D, 03-216 Warszawa
Nr stoiska iBros technic: 119
Godziny:
3 marca 2020: godz. 09.00 – 17.00
4 marca 2020: godz. 09.00 – 16.00
FLIR C2 - 4 800 pikseli
Rozdzielczość - 80 x 60
Pomiary: -10°C to +150°C
Wyjatkowa gwarancja FLIR Systems: 2-5-10
Główne zalety C2:
Do pobrania: Specyfikacja techniczna kamery termowizyjnej FLIR C2
Rozdzielczość detektora | 80 × 60 (4 800 pikseli) |
Czułość | ‹ 0.10°C |
FOV | 41° x 31° |
Minimalna odległość ostrzenia | IR: 0.15 m (0.49 ft.) MSX®: 1.0 m (3.3 ft.) |
Częstotliwość odświeżania | 9 Hz |
Zakres spektralny | 7.5 - 14 µm |
Wielkość wyświetlacza | 3” (320 x 240 pikseli) |
Auto-orientacja | Tak |
Ekran dotykowy | Tak |
Tryby obrazowania | |
Obraz podczerwony | Tak |
Obraz widziany | Tak |
MSX® | Tak |
Galeria | Tak |
Pomiary | |
Zakres pomiaru temperatury | -10°C to +150°C (14 to 302°F) |
Dokładność | ±2°C lub 2%, (w zależności która wartość jest większa) |
Analiza obrazu | |
Pomiar w punkcie | pomiar lub brak |
Korekcja emisyjności | Tak; matowa/półmatowa/błyszcząca + nastawiana przez użytkownika |
Korekcja pomiarów | Emisyjność, Temperatura odbita |
Ustawienia | |
Palety | Żelazo, Tęcza, Tęcza HC, Szara |
Pamięć | Wbudowana pamięć, zapis co najmniej 500 zdjęć |
Format zapisu | JPEG, 14 bitowe dane pomiarowe |
Streaming wideo | |
Obraz IR nieradiometryczny | Tak |
Obraz światła widzianego | Tak |
Kamera cyfrowa | |
Rozdzielczość | 640 x 480 pikseli |
Ustawienia ostrości | Stałe |
Dodatkowe informacje | |
Gniazdo USB | USB Micro-B: Możliwość przesyłu dany z oraz do komputera, urządzeń mobilnych |
Bateria | 3.7 V Akumulator Li-Ion |
Czas pracy na baterii | 2 godziny |
Ładowanie | ładowanie w kamerze |
Czas ładowania | 1,5 godziny |
Zasilanie zewnętrzne | Zasilacz AC, 90-260 VAC wejście 5 V wyjście do kamery |
Zarządzanie energią | Automatycze wyłączanie |
Temperatura pracy | -10°C do +50°C (14 to 122°F) |
Temperatura przechowywania | -40°C do +70°C (-40 to 158°F) |
Waga | 0.13 kg (0.29 lb.) |
Rozmiar (Dł. x Szer. x Wys.) | 125 x 80 x 24 mm (4.9 x 3.1 x 0.94 in.) |
Zastosowanie kamer C2:
iBros technic weźmie udział w tegorocznej edycji targów Efektywności Energetycznej w Przemyśle 2017 oraz 4Insulation - Międzynarodowe targi Izolacji Przemysłowych które obędą się w hali EXPO przy ul. Galicyjskiej 9 w Krakowie. Stoisko: D47a W czasie targów będzie możliwe obejrzenie i testowanie najnowszych, dostępnych od marca 2017 roku kamer termowizyjnych marki FLIR Systems, premierowych urządzeń AirPro, balometru i mierników do regulacji instalacji wentylacji renomowanej marki TSI Inc, jak również innych narzędzi kontrolno-pomiarowych (kamery inspekcyjne, pirometry termowizyjne, wilgotnościomierze).
Zapraszamy również do wzięcia udziału w konferencji "HEAT not LOST" gdzie poruszane będą tematy izolacyjności przegród budowlanych oraz metod odzysku i efektywnego transportu ciepła w przemyśle. Bedzie nam miło spotkać się z Państwem i porozmawiać chociaż przez chwilę. Serdecznie zapraszamy.
|
Miejsce targów:
EXPO Kraków
ul. Galicyjska 9 (boczna od ul.Centralnej)
31-586 Kraków
Nr stoiska iBros technic: D47a
Godziny:
10 październik 2017: godz. 9.00 - 17.00
11 październik 2017: godz. 9.00 - 16.00
Więcej informacji o targach EFE 2017
ul. Karbowa 26, 43-300 Bielsko-Biała
FLIR MR40
Wilgotnościomierz z latarką
FLIR MR40 to przenośny, wytrzymały, 2-pinowy miernik wilgotności do drewna i materiałów budowlanych, wyposażony w zintegrowaną latarkę. Idealny dla budowniczych, inspektorów budynków, techników do napraw związanych z wilgocią, specjalistów zajmujących się zwalczaniem szkodników oraz wykonawców pokryć dachowych i podłóg. FLIR MR40 jest dostępnym w przystępnej cenie, łatwym w obsłudze narzędziem do wyszukiwania i pomiaru wilgoci, które zapewnia wiarygodne i dokładne wyniki.
W połączeniu z kamerą termowizyjną, FIR MR40 może potwierdzić, czy zimna plama na obrazie termicznym jest wilgocią i zmierzyć jak poważny jest problem.
Łatwy w użyciu
Proste i skuteczne narzędzie, zapewniające niezawodne pomiary
Wygodny, przenośny, wytrzymały
Gotowy do pracy w każdej chwili i w każdym miejscu
Wiarygodne i dokładne pomiary
Wyposażony w niezbędne cechy i funkcje do szybkiej weryfikacji i oceny wilgotności
Pomiar |
|
Zakres pomiaru |
5% do 60% MC |
Dokładność pomiaru |
5 do 30% MC: +/- 2% 30 do 60% MC: Tylko odniesienie
Uwaga: W przypadku materiałów innych niż z Grupy 9 / Materiały budowlane: sklejki, płyty gipsowo-kartonowe i płyty OSB pobierz tabelę konwersji materiałów MR40 (publikacja MR40-AN01): http://tinyurl.com/jteb653 |
Sygnał dźwiękowy |
5 do 12% Niski poziom dźwięku 13 do 60% Wyższy poziom dźwięku Ponad 60% Najwyższy poziom dźwięku (wyświetlanie OL) |
Kalibracja/ Sprawdzenie połączenia pinów z nasadką |
16,00% |
Informacje ogólne |
|
Latarka |
~ 40 lumenów |
Wyświetlacz |
LCD |
Elektrody typu Pin |
Zintegrowane, wymienne (w zestawie 4 piny) |
Zasada pomiaru |
Opór elektryczny |
Gwarancja |
Ograniczona dożywotnia gwarancja |
Okres kalibracji |
Nie dotyczy |
Bateria |
2 x baterie alkaliczne AAA (w zestawie) |
Żywotność baterii |
70 godzin (bez włączania latarki) |
Wskaźnik poziomu baterii |
Ikona z 4 poziomami naładowania baterii |
Funkcja automatycznego wyłączania |
Po 3 minutach |
Test upadku z wysokości |
3 m |
Stopień ochrony |
IP54 |
Temperatura pracy |
-10°C do 60°C |
Waga |
80 g z bateriami |
Wymiary |
193 x 26 x 31 mm |
Materiał |
PC-ABS w/TPE Overmold |
Zawartość zestawu |
Uniwersalny kod produktu |
MR40 Wilgotnościomierz z latarką (dodatkowy zestaw pinów w pudełku) |
793950370414 |
Akcesoria opcjonalne |
|
MO25-PINS Zapasowe elektrody typu Pin (10 pinów w opakowaniu) |
793950470268 |
Dane techniczne mogą ulec zmianie bez powiadomienia.
Światło robocze eliminuje potrzebę posiadania osobnej latarki
Solidna, wytrzymała konstrukcja umożliwiająca pomiar w ciasnych przestrzeniach
Szybki i łatwy w użyciu, wiarygodne i dokładne wyniki
Użyj MR40 z kamerą termowizyjną, aby sprawdzić czy w zimnych miejscach wskazanych na obrazie termicznym występuje wilgoć
FLIR MR277 jest dokładnym, łatwym w użyciu, uniwersalnym narzędziem do szybkiego lokalizowania wilgoci i problemów z budynkiem. Ten profesjonalny miernik wilgotności łączy zalety pomiaru w podczerwieni (IGM™) z obrazowaniem dynamicznym FLIR (MSX®) i zaawansowanymi czujnikami środowiskowymi, co pozwala na szybkie lokalizowanie, identyfikację i dokumentowanie problemów. Zintegrowany bezpinowy czujnik wilgotności zapewnia szybkie, nieinwazyjne pomiary, które można następnie potwierdzić przy użyciu zewnętrznej sondy pinowej. Funkcje takie jak wbudowany higrometr i wymienny czujnik temperatury/wilgotności względnej przyspieszają rozwiązywanie problemów, a funkcja METERLiNK® pozwala łączyć się z urządzeniami mobilnymi i przesyłać dane do aplikacji FLIR Tools® w celu raportowania wyników.
SZYBKO LOKALIZUJ PROBLEMY Z BUDYNKIEM Wyraźnie zobacz obszary budzące obawy dzięki wysokiej jakości czujnikowi termowizyjnemu 160×120 Szybko znajduj problemy przy użyciu technologii IGM Łatwo identyfikuj problemy z pomocą funkcji MSX, która wytłacza szczegóły obrazu widzialnego na obrazach termicznych Dokonuj pomiaru dokładnie w źródle problemu, dzięki zintegrowanemu wskaźnikowi laserowemu SKUTECZNA I DOKŁADNA DIAGNOSTYKA Szybkie skanowanie w poszukiwaniu wilgoci z pomocą zintegrowanego nieinwazyjnego czujnika bez pinów Przechwytuj dokładne pomiary za pomocą zewnętrznej sondy pinowej (w zestawie) i szerokiej gamy opcjonalnych sond wilgotnościowych Skróć czas przestoju dzięki wymiennemu czujnikowi temperatury/wilgotności Obliczone parametry na podstawie danych wejściowych z wielu czujników: ciśnienie pary i punkt rosy
ZRÓB WIĘCEJ W KRÓTSZYM CZASIE Utwórz pojedynczy plik dokumentujący kompleksowe obrazy termiczne i wizualne z odczytam higrometru i lokalizacją lasera Pobieraj zdjęcia i dane bezprzewodowo lub za pomocą dołączonego kabla USB Analizuj obrazy i szybko generuj raporty, przy użyciu bezpłatnego oprogramowania FLIR Tools Łatwy w użyciu z intuicyjnym interfejsem Dane techniczne mogą ulec zmianie bez powiadomienia. Najnowsze dane techniczne są dostępne na stronie www.flir.com Cechy i zalety
Łatwo namierzaj źródło wilgoci i problemy budowlane
Wykonuj kompleksowe pomiary wilgotności i analizuj odczyty
Jedno narzędzie, które pomaga wykonać zadanie
Specyfikacja
Specyfikacja techniczna FLIR MR277:
Zapewnienie jakości ma fundamentalne znaczenie w systemach solarnych. Bezawaryjna praca paneli jest warunkiem efektywnego wytwarzania energii, długiej żywotności oraz szybkiego zwrotu inwestycji. Aby zapewnić bezawaryjną pracę, wymagana jest prosta i niezawodna metoda oceny wydajności panelu słonecznego zarówno w procesie produkcyjnym, jak i po montażu. |
Zastosowanie kamer termowizyjnych w badaniach paneli słonecznych ma wiele zalet. Nieprawidłowości mogą być wyraźnie widoczne na ostrym obrazie termicznym oraz - w przeciwieństwie do większości innych metod - kamery termiczne mogą być używane do skanowania zainstalowanych paneli słonecznych, w czasie normalnej pracy. Wreszcie, kamery termowizyjne pozwalają skanować duże powierzchnie w krótkim czasie.
W dziedzinie badań i rozwoju kamery termowizyjne są narzędziem do oceny ogniw słonecznych i paneli. Dla tych skomplikowanych pomiarów, kamery o wysokiej wydajności, zwykle z chłodzonymi detektorami stosuje się w kontrolowanych warunkach laboratoryjnych.
Jednakże stosowanie kamer termowizyjnych do paneli słonecznych nie jest ograniczone tylko w dziedzinie badań. Kamery termowizyjne są obecnie coraz częściej używane do kontroli jakości paneli słonecznych przed instalacją oraz do badań kontrolnych i konserwacyjnych po zamontowaniu panelu. Kamery te są przenośne, lekkie i pozwalają na bardzo elastyczne wykorzystanie w terenie.
Za pomocą kamery termowizyjnej potencjalne obszary problemowe mogą być wykryte i naprawione przed wystąpieniem rzeczywistych problemów i awarii. Ale nie każda kamera termowizyjna jest przeznaczona do kontroli ogniw słonecznych. Są pewne zasady i wytyczne, które muszą być przestrzegane w celu przeprowadzenia skutecznych kontroli i wyciągnięcia właściwych wniosków. Przykłady w tym artykule są oparte na modułach fotowoltaicznych z krystalicznych ogniw słonecznych; jednak zasady i wytyczne mają również zastosowanie do kontroli termograficznych modułów cienkowarstwowych.
Procedury kontroli paneli słonecznych z kamer termowizyjnych
Podczas procesu rozwoju i produkcji komórki słoneczne są uruchamiane elektrycznie lub z wykorzystaniem lampy błyskowej. Gwarantuje to, że istnieje wystarczający kontrast termiczny do dokładnych pomiarów termowizyjnych. Metoda ta nie może być stosowana przy badaniu paneli słonecznych w tej dziedzinie, jednak operator musi upewnić się, że nie ma wystarczającej ilości energii dostarczonej przez Słońce.
Aby osiągnać wystarczający kontrast termiczny podczas sprawdzania ogniw słonecznych, potrzebne jest natężenie promieniowania słonecznego 500 W / m2 lub więcej. Dla maksymalnego efektu wskazane jest natężenie promieniowania słonecznego 700W / m2. Natężenie promieniowania słonecznego opisuje incydent chwilowej mocy na powierzchni w jednostkach kW / m2, która może być mierzona poprzez piranometr (globalne promieniowanie słoneczne)lub pyrheliometr (bezpośrednie promieniowanie słoneczne). To w dużym stopniu zależy od położenia i lokalnych warunków pogodowych. Niskie temperatury na zewnątrz mogą również zwiększyć kontrast termiczny.
Jaki typ aparatu jest potrzebny?
Przenośne kamery termowizyjne do predykcyjnych przeglądów serwisowych zazwyczaj mają niechłodzony detektor mikrobolometryczny w zakresie 8-14 mikrometrów. Jednak szkło nie jest przezroczyste w tym obszarze. Gdy ogniwa słoneczne są kontrolowane od przodu, kamera termowizyjna widzi dystrybucję ciepła na powierzchni szkła, ale tylko pośrednio dystrybucję ciepła w komórkach bazowych. Dlatego różnice temperatur, które mogą być mierzone i obserwowane na powierzchni panelu słonecznego są małe. Aby te różnice były widoczne, kamera termowizyjna wykorzystywana do tych kontroli potrzebuje czułości termicznej ≤0.08K. Do wyraźnej wizualizacji małych różnic temperatury w obrazie termicznym, aparat powinien mieć możliwość ręcznej regulacji poziomu i rozpiętości.
Moduły fotowoltaiczne są zwykle montowane na bardzo refleksyjnej konstrukcji aluminiowej, która przedstawia się jako zimny obszar na obrazie termicznym, ponieważ odbija promieniowanie cieplne emitowane przez niebo. W praktyce oznacza to, że kamera termowizyjna rejestruje temperaturę ramową znacznie poniżej 0 ° C. Ponieważ wyrównanie histogramu obrazowania kamery termicznej automatycznie dostosowuje się do maksymalnych i minimalnych temperatur, wiele małych anomalii termicznych nie będzie od razu widoczne. Aby osiągnąć wysoki kontrast obrazu termicznego będzie potrzebna ciągła ręczna korekcja poziomu i zakresu.
Tzw. DDE (Digital Detail Enhancement) zapewnia funcjonalne rozwiązanie.DDE automatycznie optymalizuje kontrast obrazu w scenach z wysokim zakresem dynamiki, a obraz termiczny nie musi być regulowany ręcznie. Kamera termowizyjna z funkcją DDE idealnie nadaje się do szybkich i dokładnych kontroli paneli słonecznych.
Zdjęcie termowizyjne bez DDE (od lewej) i z DDE (od prawej)
Przydatne funkcje
Kolejną przydatną funkcją dla kamery termowizyjnej jest tagowanie zdjęć termalnych z danych GPS. Pozwala to na łatwe zlokalizowanie wadliwych modułów w dużych obszarach, np. w gospodarstwach słonecznych, a także odnoszenie obrazów termicznych do urządzeń, np. w raportach.
Kamera termowizyjna powinna mieć wbudowany aparat cyfrowy, który wiąże się z obrazem cyfrowym (cyfrowe zdjęcia) umożliwiając zapisywanie z powiązanego obrazu termicznego. Jest to tzw. tryb fuzji pozwalający na nakładanie obrazów cieplnych i wizualnych, które mogą być również użyteczne. Przy tworzeniu raportów mogą okazać się przydatne komentarze głosowe oraz tekstowe, które mogą być zapisywane w kamerze razem z obrazem termicznym.
Ustawienie aparatu: odbicia i emisyjność
Mimo, że szkło ma emisyjność 0.85-0.90 w zakresie 8-14 mikrometrów, pomiary termiczne na powierzchni szkła nie są łatwe do zrobienia. Odbicia szklane są lustrzane, co oznacza, że otaczające przedmioty o różnych temperaturach mogą być wyraźnie widoczne w obrazie termicznym. W najgorszym przypadku powoduje to błędną interpretację (fałszywe "gorące punkty") oraz błędy pomiarowe.
Aby uniknąć odbicia kamery termowizyjnej i operatora w szkle, instrument nie powinien być ustawiony prostopadle do sprawdzanego modułu. Jednak emisyjność jest najwyższa, gdy kamera ustawiona jest prostopadłe, a zmniejsza się wraz ze wzrostem kąta. Dobrym rozwiązaniem jest kąt patrzenia 5-60 °.
Kąt zależny od emisyjności szkła
Obserwacje długodystansowe
Nie zawsze łatwe jest osiągnięcie odpowiedniego kąta widzenia podczas pomiaru set-up. Korzystanie ze statywu może stanowić rozwiązanie tego problemu w większości przypadków. W trudniejszych warunkach może być konieczne skorzystanie z mobilnych platform roboczych, a nawet latanie helikopterem nad panelami słonecznymi. W tych przypadkach, większa odległość od celu może być korzystna, ponieważ większa powierzchnia może być postrzegana w jednym przejściu.
W celu zapewnienia wysokiej jakości obrazu termicznego do badań na dłuższych dystansach, powinna być stosowana kamera termowizyjna o rozdzielczości obrazu co najmniej 320 × 240 pikseli, a najlepiej 640 × 480 piksel.
Kamera powinna mieć również wymienny obiektyw, dzięki czemu operator może przejść do teleobiektywu podczas obserwacji na dużą odległość, taką jak z helikoptera. Wskazane jest jednak, aby korzystać tylko z teleobiektywów kamer termowizyjnych, które mają wysoką rozdzielczość obrazu. Niska rozdzielczość kamery termowizyjnej w pomiarach z dużej odległości przy użyciu teleobiektywu nie będzie w stanie odebrać małych szczegółów, które wskazują błędy cieplne paneli słonecznych. Aby nie wyciągnąć fałszywych wniosków należy trzymać kamerę termowizyjną pod odpowiednim kątem podczas inspekcji paneli słonecznych.
Patrząc na to z innej perspektywy
W większości przypadków, zainstalowane moduły fotowoltaiczne mogą być kontrolowane za pomocą kamery termowizyjnej z tylnej części modułu. Metoda ta minimalizuje przeszkadzające odbicia od słońca i chmur. Ponadto, temperatury uzyskane z tyłu mogą być większe, a pomiar jest wykonywany bezpośrednio, a nie przez powierzchnię szkła.
Warunki otoczenia i pomiarów
Podejmując inspekcje termograficzne, niebo powinno być jasne, ponieważ chmury zmniejszają natężenie promieniowania słonecznego, a także powodują zakłócenia przez odbicia. Informacyjne obrazy mogą być jednak uzyskane nawet przy zachmurzonym niebie, pod warunkiem, że używana kamera termowizyjna jest wystarczająco czuła. Pożądane są spokojne warunki, ponieważ każdy strumień powietrza na powierzchni modułu słonecznego powoduje konwekcyjne chłodzenie, a tym samym zmniejsza się gradient temperatury. Niższe temperatury powietrza dają wyższy potencjał kontrastu cieplnego. Dobrym rozwiązaniem jest przeprowadzanie inspekcji termograficznych w godzinach porannych.
Innym sposobem, zwiększenia kontrastu termicznego jest odłączenie komórki od obciążenia, w celu uniemożliwienia przepływu prądu. Następnie, obciążenie jest podłączone, a komórki obserwuje się w fazie nagrzewania.
W normalnych okolicznościach system powinien być sprawdzany w naturalnych warunkach pracy, to znaczy pod obciążeniem. W zależności od typu komórki i rodzaju uszkodzenia lub awarii, pomiary mocy bez obciążenia lub warunków zwarciowych mogą dostarczyć dodatkowych informacji.
Pirwszy obraz termograficzny pokazuje duże obszary o podwyższonej temperaturze. Bez większej liczby informacji nie wiemy czy są to nieprawidłowości termiczne czy cień lub refleksje. Kolejny termogram ukazuje tył modułu solarnego, obraz wykonany kamerą FLIR P660. Wizualny obraz tej sytuacji jest pokazany na kolejnym zdjęciu.
Błędy pomiaru
Błędy pomiaru wynikają przede wszystkim ze złego ustawienia kamery oraz panujących warunków otoczenia i pomiarowych.
Typowe błędy pomiarowe są spowodowane:
• zbyt płytkim kątem widzenia
• zmianą natężenia promieniowania słonecznego w czasie (z powodu zmian na niebie)
• odbiciami (np, słońce, chmury, okoliczne budynki o większej wysokości, pomiary set-up)
• częściowym zacienieniem (np. z powodu otaczających budynków lub innych budowli).
Co można zobaczyć w obrazie termicznym
Jeśli części panelu słonecznego są cieplejsze niż w innych miejscach, ciepłe obszary pojawią się wyraźnie w obrazie termicznym. W zależności od kształtu i położenia tych obszarów gorące plamy mogą wskazywać na wiele różnych wad. Jeżeli cały moduł jest cieplejszy niż zwykle może to wskazywać na występujące problemy.
Zacienienia i pęknięcia w komórkach pojawiają się jako gorące plamy lub wielokątne plamy w obrazie termicznym. Wzrost temperatury z komórki lub części komórki wskazuje na uszkodzoną komórkę lub zacienienia. Obrazy termiczne uzyskane pod obciążeniem, bez obciążenia oraz w warunkach zwarcia powinny być porównywane. Porównanie obrazów termicznych przednich i tylnych powierzchni modułu może dać cenne informacje. Oczywiście, dla prawidłowej identyfikacji awarii, moduły wykazujące anomalie muszą być testowane elektrycznie i poddane oględzinom.
Wnioski
Kontrola termowizyjna systemów fotowoltaicznych pozwala szybko lokalizować ewentualne uszkodzenia na poziomie komórek i modułów, jak również wykrycie ewentualnych problemów wzajemnych połączeń elektrycznych. Kontrole są przeprowadzane w normalnych warunkach pracy i nie wymagają zamykania systemu.
Dla prawidłowych i informacyjnych obrazów termicznych, obowiązują określone zasady i procedury pomiarowe:
• powinna być stosowana kamera termowizyjna z odpowiednimi akcesoriami;
• wymagane jest natężenie promieniowania słonecznego (co najmniej 500 W / m2 ; preferowane powyżej 700 W / m2);
• kąt widzenia musi być w bezpiecznym przedziale ( 5 ° - 60 °);
• należy zapobiegać zacienieniom i odbiciom
Kamery termowizyjne są wykorzystywane przede wszystkim do zlokalizowania usterki. Klasyfikacja i ocena wykrytych nieprawidłowości wymaga dogłębnego zrozumienia techniki solarnej, znajomości systemu kontroli i dodatkowych pomiarów elektrycznych. Właściwa dokumentacja jest oczywiście koniecznością i powinna zawierać wszystkie warunki kontroli, dodatkowe pomiary i inne istotne informacje.
Kontrole z kamery termowizyjnej – począwszy od kontroli jakości w fazie instalacji, kolejne regularne kontrole - ułatwiają proste monitorowanie stanu systemu. Pomaga to w utrzymaniu funkcjonalności paneli słonecznych i przedłuża ich żywotność. Za pomocą kamer termowizyjnych do kontroli kolektorów słonecznych można zdecydowanie przyspieszyć zwrot z wykonanej inwestycji.
Typ błędu |
Przykład |
Pojawia się w obrazie termicznym jako |
Wada produkcyjna |
Zanieczyszczenia i pęcherze gazowe |
"gorące punkty" lub "zimne punkty" |
Pęknięcia w komórkach |
Ogrzewanie komórek, forma głównie wydłużona |
|
Uszkodzenia |
Pęknięcia |
Ogrzewanie komórek, forma głównie wydłużona |
Pęknięcia w komórkach |
Część komórki wydaje się gorętsza |
|
Tymczasowe zacienienie |
skażenie |
Gorące miejsca |
Ptasie odchody |
||
wilgotność |
||
Uszkodzona dioda bypass (powoduje zwarcia i zmniejsza ochronę obwodu) |
N.a. |
"wzorzec patchwork" |
Wadliwe połączenia |
Moduł lub ciąg modułów nie podłączony |
Moduł lub ciąg modułów jest stale cieplejsze |
Tabela 1: Lista typowych błędów modułu (Źródło: ZAE Bayern eV "Überprüfung der qualität von Photovoltaik- Modulen Infrarot-Aufnahmen mittels" ["Badania jakości w modułów fotowoltaicznych przy użyciu obrazowania w podczerwieni"], 2007)
Skorzystaj z wyjątkowej wewnętrznej promocjii iBros Technic!
Kup kamerę termowizyjną FLIR Systems
a markowy tablet Samsung Galaxy Tab E4 10'' z oprogramowaniem Flir Tools Mobile dostaniesz gratis!
1. Kup kamerę termowizyjną światowej marki FLIR
2. Odbierz nowy tablet Samsung Galaxy Tab E z zainstalowaną aplikacją FLIR Tools Mobile
3. Rozszerz możliwości i analizuj wyniki pomiarów na swoim tablecie z Flir Tools Mobile
Tylko w iBros technic przy zakupie kamery termowizyjnej FLIR serii E8, Exx oraz Txx otrzymasz
nowy tablet Samsung Galaxy Tab E za symboliczną kwotę lub nawet całkowicie GRATIS!
Oprogramowanie Flir Tools Mobile na przekazanym z kamerą markowym tablecie!
Nie przegap okazji!
Promocja ograniczona czasowo: do dnia 31.X.2016 r.
_
Skontaktuj się z dystrybutorem marki FLIR Systems w Polsce. Służymy pomocą.
iBros technic
ul. Aleksandra Fredry 2
30-605 Kraków
tel.: +48 12 37 67 051
email: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript. Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.">