A+ A A-

Właściwości

Nowa seria BX o rozszerzonych parametrach.

FLIR T620 & T640 (bx) - 307 200 pikseli
Rozdzielczość - 640 x 480

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety serii T 6xx:

  • UltraMax – jeszce wieksza rozdzielczość na zdjęciach termowizyjnych - teraz kamera termowizyjna FLIR pozwala na wykonywanie zdjęć termowizyjnych z 4x wiekszą rozdzielczością
  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Komunikacja bezprzewodowa – wbudowany modół Wi-Fi pozwala na komunikację z urzadzeniami mobilnymi takimi jak telefony komórkowe, laptopy. Dzięki darmowym aplikacjom mozna przesyłac dane do urządzeń mobilnych, zdalnie sterować kamerą, ogladac obraz z kamery w czasie rzeczywistym
  • Notatki na ekranie – dotykowy ekran pozwala na nanoszenie notatek za pomocą rysika, nie ma potrzeby czekać, aż zdjęcie zostanie przeslane do komputera. Jesli znajdziesz jakiś punkt na ktory trzeba zwrócic szczególna uwage - zaznacz go!
  • Notatki głosowe – masz watpliwości, chcesz cos podkreślić, masz zajete ręce - nagraj notatke głosowa i dołącz ja do zdjecia.
  • Obrotowy obiektyw - pozwala na pochylenie obiektywu w zakresie 120º, umozliwia wykonywanie zdjęć w trudno dostępnych miejscach.
  • Fuzja termiczna oraz obraz w obrazie - pozwala na umieszczenie dowolnie skalowalnego obrazu termicznego w obrazie widzialnym
  • Wbudowany GPS - dodaj do obrazu współrzędne geograficzne
  • Nastawa ostrości - ręczna i automatyczna nastawa ostrości
  • Wbudowany kompas - podaje kierunek w jakim wykonywane jest obrazowanie termiczne

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej T620 oraz T640 (bx):

  FLIR T620 FLIR T640
Dokładność ±2% lub 2°C ±2% lub 2°C
Rozdzielczość detektora 307 200 (640 x 480) 307 200 (640 x 480)
Czułość termiczna <0.04°C <0.035°C
Zakres pomiaru temperatury -40°C do 650°C (-40°F to 1,202°F) opcjonalnie do 2 000°C (3,632°F) -40°C do 2,000°C (-40°F to 3,632°F)
Wielkość wyświetlacza 4.3”/Panoramiczny 4.3”/Panoramiczny
Wizjer Nie Tak
Tryby pomiarowe 5 trybów: 5 punktów, 5 powierzchni, Izoterma, Auto punkt ciepły/zimny; Delta T 5 trybów: 5 punktów, 5 powierzchni, Izoterma, Auto punkt ciepły/zimny; Delta T
Punkty pomiarowe 10 przesuwalnych 10 przesuwalnych
Częstotliwość odświeżania 30 Hz 30 Hz
FOV 25° × 19° 25° × 19°
FOV taki jak w obiektywie Tak Tak
Opcjonalne obiektywy 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um
Ustawienie ostrości Manualne & Automatyczne Manualne & Automatyczne
Ciągły auto-fokus Nie Tak
Minimalna odległość ostrzenia 0.25 m (9.8 in.) 0.25 m (9.8 in.)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak Tak
Palety 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami)
Oprogramowanie FLIR Tools Tak Tak
Raport w kamerze Tak Tak
Czas pracy na baterii >2.5 godzin >2.5 godzin
Kamera wbudowana 5MP 5MP
Wbudowane podświetlenie LED Tak Tak
Ekran dotykowy Tak Tak
Zoom cyfrowy
Alarm izolacji Nie Nie
Alarm punktu rosy Nie Nie
Połączenie MeterLink® Tak Tak
Wskaźnik laserowy Tak Tak
Indykator wskaźnika na obrazie IR Tak Tak
Kompas Tak Tak
GPS Tak Tak
Korekcja dla okna wziernikowego IR Window Tak Tak
Delta T Tak Tak
Obraz w obrazie Dostosowanie PIP Dostosowanie PIP
Fuzja termiczna Tak Tak
MSX™ Obrazowanie multispektralne Tak Tak
Szkic na ekranie Tak Tak
Szkic na zdjęciu IR Nie Tak
Notatki tekstowe/głosowe Tak Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak Tak
Streaming video Tak Tak
Zdalne sterowanie FLIR App Remote Control Tak Tak
Odporność na upadek (2 metry/6.6 stóp) Nie Nie
Waga (włącznie z bateriami) 1.3 kg (2.87 lbs) 1.3 kg (2.87 lbs)

 

Zastosowanie kamer T 6xx:

  • Wykonywanie pomiarów testowych instalacji 
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

Zalety kamer termowizynych z serii T 6xx:

  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 1,3 kg
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 2,5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

breaker-panel-infrared breaker-panel-infrared
discharge-pipe discharge-pipe
single-phase-transformer single-phase-transformer
motor-bearing-infrared motor-bearing-infrared

MSX

 

flir-t640-motors flir-t640-motors
flir-t640-msx-motors flir-t640-msx-motors
flir-t640-panel flir-t640-panel
flir-t640-msx-panel flir-t640-msx-panel
flir-t640-recessed-lights flir-t640-recessed-lights
flir-t640-msx-recessed-lights flir-t640-msx-recessed-lights

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej T640:

air-infiltration air-infiltration
missing-insulation missing-insulation
pump-motor pump-motor
radiant-heat radiant-heat
wet-insulation-infrared wet-insulation-infrared
tank-levels-infrared tank-levels-infrared

 

Kamera inspekcyjna - wideoskop

Zakup domu to poważna inwestycja finansowa dla każdego, ponieważ dom ma fundamentalne znaczenie dla bezpieczeństwa życia. Jako wiodący ekspert w inspekcji domów w Japonii, pierwszej klasy architekt pan Hiroshi Ichimura, wykorzystuje termografię – kamery termowizyjne FLIR do diagnostyki budynków. Pan Ichimura prowadzi firmę "Home and Estate Consulting Center" , która specjalizuje się w zapewnieniu kontroli i usług diagnostycznych zgodnie z wymaganiami klienta. Wymogiem niektórych klientów jest chęć zakupu gotowych planów budynku, więc zaangażowanie firmy rozpoczyna się od podpisania umowy do zakończenia budowy, lub tacy klienci, którzy życzą sobie przeprowadzenia diagnostyki ukończonych, nowo powstałych budynków.

Termografia w podczerwieni systemu FLIR może wykryć problemy budowlane, które są niewidoczne gołym okiem. Kamery termowizyjne mają możliwość wizualizacji problemów konstrukcyjnych, takich jak błędy w wykonaniu izolacji, nieszczelności, kondensacja pary wodnej, pleśń oraz nieszczelności w ogrzewaniu podłogowym, aby wskazać dokładną lokalizację problemu.

Architekt Hiroshi Ichimura, który zaangażował się w projekt około 1800 budynków, w ciągu 20 lat, uzyskał ogromne doświadczenie dzięki diagnostyce ponad 200 budynków. Posiada uprawnienia do wykonywania inspekcji domów, które były prawie niespotykane w Japonii przed 2001 rokiem. Klienci podzieleni są na dwa rodzaje; tych, którzy planują zbudować nowy dom i wymagają kontroli od umowy do zakończenia i tych, którzy już przenieśli się do nowego domu i potrzebują inspekcji domu, które ujawnią potencjalne wady.

"Termografia w podczerwieni jest bardzo przydatna do kontroli w trakcie budowy, a także po jej zakończeniu. Diagnoza domów wybudowanych na sprzedaży jest szczególnie przydatna w wykrywaniu wad izolacji i przecieków wody z izolacji." - mówił Hiroshi Ichimura.

FLIR IBROS raport

Rys.1 Przykład raportu diagnostycznego kontroli wnętrza domku jednorodzinnego. Zdjęcia przedstawiają różnicę w  temperaturze, pomiędzy nagrzanym kaloryferem, a zimnymi miejscami na powierzchni ściany. Korzystanie z termografii w podczerwieni pomaga określić dokładną lokalizację kondensacji pary wodnej - wilgoci np. na ścianie wewnętrznej, tak aby poprawić skuteczność kontroli. Wygenerowanie raportu za pomocą oprogramowania FLIR zajęło 10 sekund.

Pan Ichimura mówi:"Chociaż strategie izolacyjne mogą się różnić w zależności od metod budowlanych, odpowiedni i staranny dobór oraz rozmieszczenie izolacji może mieć ogromny wpływ na efektywność izolacji cieplnej. Korzystanie termografii w podczerwieni pozwala na zapewnienie wizualne, że wybór i montaż izolacji jest prawidłowy. Podczas etapów budowy, można sprawdzić obecność niechcianych przestrzeni między materiałami izolacyjnymi, a w razie potrzeby żądać prac naprawczych, aby zapobiec wadliwemu ociepleniu nowych budynków.

"Wycieki wody, czy poważne przecieki mogą być widoczne jako plamy na materiałach budowlanych, ale zwykła wilgoć jest bardzo trudna do określenia i zlokalizowania. Konwencjonalna kontrola wilgoci jest niezmiernie pracochłonna, a co za tym idzie czasochłonna. Po pierwsze, inspektor budynku musi założyć, gdzie może wystąpić nieszczelność w oparciu o strukturę domu. Kolejną czynnością jest symulacja wycieku wody, oraz testowanie przez dotknięcie miejsca podejrzanego o wyciek wody. Największym problemem przy użyciu konwencjonalnych metod, jest ocena stopnia przecieku i dalszych uszkodzeń spowodowanych w budynku. Korzystanie z termografii w podczerwieni, pozwala określić dokładną lokalizację i stopień wycieku, bez powodowania szkód, oraz umożliwia skuteczną kontrolę", powiedział pan Ichimura.

FLIR iBros sufit szczelność
Rys.2 Realny przykład z budowy: Istniejące przestrzenie pomiędzy materiałami izolacyjnymi, powodują niepożądany strumień powietrza.

FLIR iBros poddasze
Rys.3 Realny przykład z budowy: izolacja zdarta po pracach elektrycznych i pozostawiona bez uszczelnienia.

"Przecieki wody, nie tylko mają tendencję do uszkodzenia powierzchni ściany, powstanie pleśni z powodu wilgoci z kondensacji pary wodnej, ale również do spowodowania uszkodzenia integralności strukturalnej materiałów budowlanych, co stanowi poważny problem."

Pan Ichimura wykorzystuje kamery termowizyjne FLIR E60 dla takich zastosowań. FLIR E60 do inspekcji budynków jest ręczną kamerą termowizyjną. Kamera tworzy ostre obrazy w podczerwieni, posiadając rozdzielczość 180 x 180 pikseli i zawiera wbudowany 2,3-megapikselowy aparat cyfrowy. Obejmuje również dodatkowe funkcje, które są niezbędne do przeprowadzenia diagnozy budynku, pomiarów takich elementów jak punkt rosy czy izolacja, alarmując, że istnieją obszary o ryzyku kondensacji powierzchniowej pary wodnej, a to powoduje wzrost pleśni.

"Termografia w podczerwieni umożliwia wizualizację obszarów problemowych widocznych na obrazach termicznych. Porównujemy obrazy termiczne (termogramy) w odniesieniu do cyfrowych zdjęć, co umożliwia dokładniejsze zlokalizowanie problemu. Kamera termowizyjna pozwala nam przedstawić instrukcje w celu poprawy operacji budowlanych i wykonywania prac naprawczych po zakończeniu budowy. Obrazy w podczerwieni wyraźnie poświadczają problem, a wtedy agencja budowa jest zmuszona przyznać wady w budowie.

Pan Ichimura powiedział, że zawsze istnieje kilka punktów, które należy wziąć pod uwagę przy wykonywaniu diagnozy z termografią w podczerwieni ", termografia stała się bardziej przystępne niż przed wielu laty i użyteczna, będąc narzędziem diagnostycznym dla budynków wizualizacji obszarów problemowych. Należy zauważyć, że istotne jest, aby zrozumieć strukturę każdego budynku i symulować sytuację, gdy problem jest prawdopodobny, w celu dokładnego sprawdzenia i zwiększenia skuteczności kontroli.

Właściwości

FLIR C2 - 4 800 pikseli
Rozdzielczość - 80 x 60
Pomiary: -10°C to +150°C

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety C2:

  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Obiektyw szerokokątny – specjalnie przystosowany obiektyw dzieki któremu C2 moze być wykorzystywana w budownictwie
  • 3" dodtykowy ekran – dotykowy ekran pozwala na łatwiejszą i szybszą obsługę kamery
  • Streaming wideo – zaawansowana opcja przesyłania obrazu wideo, do tej pory zarezerwowana dla droższych kamer termowizyjnych.
  • Kompaktowa budowa - lekka, funkcjonalan budowa. C2 można zawiesić na dostarczonej w zestawie smyczy lub schować w kieszeni
  • Rzeczywiste pomiary - kamera pozwala na zapis radiometrycznych obrazów w formacie JPG. Zrób zdjęcie by potem przeanalizować je na komputerze w domu!

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej C2:

Do pobrania: Specyfikacja techniczna kamery termowizyjnej FLIR C2

 

Rozdzielczość detektora 80 × 60 (4 800 pikseli)
Czułość ‹ 0.10°C
FOV 41° x 31°
Minimalna odległość ostrzenia IR: 0.15 m (0.49 ft.)
MSX®: 1.0 m (3.3 ft.)
Częstotliwość odświeżania 9 Hz
Zakres spektralny 7.5 - 14 µm
Wielkość wyświetlacza 3” (320 x 240 pikseli)
Auto-orientacja Tak
Ekran dotykowy Tak
Tryby obrazowania
Obraz podczerwony Tak
Obraz widziany Tak
MSX® Tak
Galeria Tak
Pomiary
Zakres pomiaru temperatury -10°C to +150°C (14 to 302°F)
Dokładność ±2°C lub 2%, (w zależności która wartość jest większa)
Analiza obrazu
Pomiar w punkcie pomiar lub brak
Korekcja emisyjności Tak; matowa/półmatowa/błyszcząca + nastawiana przez użytkownika
Korekcja pomiarów Emisyjność, Temperatura odbita
Ustawienia
Palety Żelazo, Tęcza, Tęcza HC, Szara
Pamięć Wbudowana pamięć, zapis co najmniej 500 zdjęć
Format zapisu JPEG, 14 bitowe dane pomiarowe
Streaming wideo
Obraz IR nieradiometryczny Tak
Obraz światła widzianego Tak
Kamera cyfrowa
Rozdzielczość 640 x 480 pikseli
Ustawienia ostrości Stałe
Dodatkowe informacje
Gniazdo USB USB Micro-B: Możliwość przesyłu dany z oraz do komputera, urządzeń mobilnych
Bateria 3.7 V Akumulator Li-Ion
Czas pracy na baterii 2 godziny
Ładowanie ładowanie w kamerze
Czas ładowania 1,5 godziny
Zasilanie zewnętrzne Zasilacz AC, 90-260 VAC wejście 5 V wyjście do kamery
Zarządzanie energią Automatycze wyłączanie
Temperatura pracy -10°C do +50°C (14 to 122°F)
Temperatura przechowywania -40°C do +70°C (-40 to 158°F)
Waga 0.13 kg (0.29 lb.)
Rozmiar (Dł. x Szer. x Wys.) 125 x 80 x 24 mm (4.9 x 3.1 x 0.94 in.)

 

Zastosowanie kamer C2:

  • Wykonywanie pomiarów testowych instalacji elektrycznych
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi

 

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

BrakOciepleniaNaScianie ibros FLIR BrakOciepleniaNaScianie ibros FLIR
NieszczelnoscPrzyGniazdku iBros NieszczelnoscPrzyGniazdku iBros
NieszczelnoscStataCiepla ibros FLIR NieszczelnoscStataCiepla ibros FLIR
PrzegrzeanyPrzelacznik ibros FLIR PrzegrzeanyPrzelacznik ibros FLIR
TablicaBezpiecznikow ibros FLIR TablicaBezpiecznikow ibros FLIR
ZimnePowietrzeWSuficiePodwieszanym ibros FLIR ZimnePowietrzeWSuficiePodwieszanym ibros FLIR

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej C2:

 

Właściwości

Kamera termowizyjna FLIR serii E xx/E xx bx (dla budownictwa)
Najszybszy sposób, aby uchwycić, analizować i udostępnić obrazy termiczne.

FLIR E40/E40bx - 19 200 pikseli
Rozdzielczość - 160 x 120
MSX - obrazowanie multispektralne
Alarmy: punktu rosy, izolacji
Ręczne ustawienie ostrości
Obiektywy do dalszej rozbudowy
Odporność na upadek z 2 m

Unikalna gwarancja FLIR Systems: 2-5-10



Odswieżona seria kamer termowizyjnych E xx, łączy w sobie wysoka jakość wykonania z łatwością obsługi. Seria E jest zaprojektowana do diagnozowania problemów instalacji elekrtycznych, budowlanych łatwiej, bardziej wydajniej i skuteczniej. Pomagają w tym następujace wlaściwości: rozdzielczość 320 × 240 przy 60 Hz do przechwytywania w czasie rzeczywistym, dzięki czemu nic nie umknie, jasny ekran dotykowy z dużą ilością narzędzi, które pomogą Ci precyzyjnie dostroić szybko analizować obrazy, Wi-Fi do transferu obrazów i danych do urządzenia mobilnego w celu dalszej analizy, raportowania i natychmiastowego dzielenia się z klientami potrzebującymi detekcji strat energii, pomocy w diagnozie instalacji HVAC, problemów z instalacjami elektrycznymi. Zbuduj swój biznes i swoją wiarygodność w oparciu o kamerę termowizyjna z serii E xx. W ofercie autoruzowanego dystrybutora amerykańskiej firmy FLIR Systems - iBros technic.

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej E40:

  FLIR E40 FLIR E40bx
Dokładność ±2% lub 2°C ±2% lub 2°C
Rozdzielczość detektora 19200 (160 x 120) 19200 (160 x 120)
Czułość termiczna <0.07°C <0.045°C
Zakres pomiaru temperatury -20°C do 650°C (-4°F to 1,202°F) -20°C do 120°C (-4°F to 248°F)
Wielkość wyświetlacza 3.5”/Panoramiczny 3.5”/Panoramiczny
Wizjer Nie Nie
Tryby pomiarowe 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T
Punkty pomiarowe 3 przesuwalne 3 przesuwalne
Częstotliwość odświeżania 60 Hz 60 Hz
FOV 25° × 19° 25° × 19°
FOV taki jak w obiektywie Nie Nie
Opcjonalne obiektywy 2: 15° Tele, 45° Szer. 2: 15° Tele, 45° Szer.
Ustawienie ostrości Manualne Manualne
Ciągły auto-fokus Nie Nie
Minimalna odległość ostrzenia 0.4 m (1.31 ft.) 0.4 m (1.31 ft.)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak Tak
Palety 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami)
Oprogramowanie FLIR Tools Tak Tak
Raport w kamerze Nie Nie
Czas pracy na baterii >4 godzin >4 godzin
Kamera wbudowana 3.1 MP 3.1 MP
Wbudowane podświetlenie LED Tak Tak
Ekran dotykowy Tak Tak
Zoom cyfrowy
Alarm izolacji Nie Tak
Alarm punktu rosy Nie Tak
Połączenie MeterLink® Tak Tak
Wskaźnik laserowy Tak Tak
Indykator wskaźnika na obrazie IR Tak Tak
Kompas Nie Nie
GPS Nie Nie
Korekcja dla okna wziernikowego IR Window Tak Tak
Delta T Tak Tak
Obraz w obrazie Stała wielkość PIP Stała wielkość PIP
Fuzja termiczna Nie Nie
MSX™ Obrazowanie multispektralne Tak Tak
Szkic na ekranie Nie Nie
Szkic na zdjęciu IR Nie Nie
Notatki tekstowe/głosowe Tak Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak Tak
Streaming video Tak Tak
Zdalne sterowanie FLIR App Remote Control Nie Nie
Odporność na upadek (2 metry/6.6 stóp) Tak Tak
Waga (włącznie z bateriami) 0.825 kg (1.82 lbs) 0.825 kg (1.82 lbs)

 

Zastosowanie:

  • Wykonywanie pomiarów testowych instalacji 
  • Okresowe przeglądy instalacji - utrzymanie ruchu
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji, panelami solarnymi
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

 Zalety:

  • łatwa obsługa
  • odporna na uszkodzenia
  • instrukcja obsługi w języku polskim
  • niska waga 865 g
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 


Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji serii kamer termowizyjnych E xx:

eseries1 eseries1
eseries2 eseries2
eseries4 eseries4
eseries5 eseries5
meterlink meterlink

Właściwości

Kamera termowizyjna FLIR serii E xx/E xx bx (dla budownictwa)
Najszybszy sposób, aby uchwycić, analizować i udostępnić obrazy termiczne.

FLIR E50bx - 43 200 pikseli
Rozdzielczość - 240 x 180
MSX - obrazowanie multispektralne
Alarmy: punktu rosy, izolacji
Ręczne ustawienie ostrości
Obiektywy do dalszej rozbudowy
Odporność na upadek z 2 m

Unikalna gwarancja FLIR Systems: 2-5-10

Odswieżona seria kamer termowizyjnych E xx, łączy w sobie wysoka jakość wykonania z łatwością obsługi. Seria E jest zaprojektowana do diagnozowania problemów instalacji elekrtycznych, budowlanych łatwiej, bardziej wydajniej i skuteczniej. Pomagają w tym następujace wlaściwości: rozdzielczość 320 × 240 przy 60 Hz do przechwytywania w czasie rzeczywistym, dzięki czemu nic nie umknie, jasny ekran dotykowy z dużą ilością narzędzi, które pomogą Ci precyzyjnie dostroić szybko analizować obrazy, Wi-Fi do transferu obrazów i danych do urządzenia mobilnego w celu dalszej analizy, raportowania i natychmiastowego dzielenia się z klientami potrzebującymi detekcji strat energii, pomocy w diagnozie instalacji HVAC, problemów z instalacjami elektrycznymi. Zbuduj swój biznes i swoją wiarygodność w oparciu o kamerę termowizyjna z serii E xx. W ofercie autoruzowanego dystrybutora amerykańskiej firmy FLIR Systems - iBros technic.

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej E50bx:

  FLIR E50 FLIR E50bx
Cena    
Dokładność ±2% lub 2°C ±2% lub 2°C
Rozdzielczość detektora 43200 (240 x 180) 43200 (240 x 180)
Czułość termiczna <0.05°C <0.045°C
Zakres pomiaru temperatury -20°C do 650°C (-4°F to 1,202°F) -20°C do 120°C (-4°F to 248°F)
Wielkość wyświetlacza 3.5”/Panoramiczny 3.5”/Panoramiczny
Wizjer Nie Nie
Tryby pomiarowe 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T
Punkty pomiarowe 3 przesuwalne 3 przesuwalne
Częstotliwość odświeżania 60 Hz 60 Hz
FOV 25° × 19° 25° × 19°
FOV taki jak w obiektywie Nie Nie
Opcjonalne obiektywy 2: 15° Tele, 45° Szer. 2: 15° Tele, 45° Szer.
Ustawienie ostrości Manualne Manualne
Ciągły auto-fokus Nie Nie
Minimalna odległość ostrzenia 0.4 m (1.31 ft.) 0.4 m (1.31 ft.)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak Tak
Palety 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami)
Oprogramowanie FLIR Tools Tak Tak
Raport w kamerze Nie Nie
Czas pracy na baterii >4 godzin >4 godzin
Kamera wbudowana 3.1 MP 3.1 MP
Wbudowane podświetlenie LED Tak Tak
Ekran dotykowy Tak Tak
Zoom cyfrowy
Alarm izolacji No Tak
Alarm punktu rosy No Tak
Połączenie MeterLink® Tak Tak
Wskaźnik laserowy Tak Tak
Indykator wskaźnika na obrazie IR Tak Tak
Kompas Nie Nie
GPS Nie Nie
Korekcja dla okna wziernikowego IR Window Tak Tak
Delta T Tak Tak
Obraz w obrazie Dostosowanie PIP Dostosowanie PIP
Fuzja termiczna Nie Nie
MSX™ Obrazowanie multispektralne Tak Tak
Szkic na ekranie Nie Nie
Szkic na zdjęciu IR Nie Nie
Notatki tekstowe/głosowe Tak Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak Tak
Streaming video Tak Tak
Zdalne sterowanie FLIR App Remote Control Nie Nie
Odporność na upadek (2 metry/6.6 stóp) Tak Tak
Waga (włącznie z bateriami) 0.825 kg (1.82 lbs) 0.825 kg (1.82 lbs)

 

Zastosowanie:

  • Wykonywanie pomiarów testowych instalacji,
  • Okresowe przeglądy instalacji - utrzymanie ruchu
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

 Zalety:

  • łatwa obsługa,
  • odporna na uszkodzenia
  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 865 g
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 


Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej E xx:

eseries1 eseries1
eseries2 eseries2
eseries4 eseries4
eseries5 eseries5
meterlink meterlink

W dniach 23-24 lutego 2017 roku firma iBros technic będzie uczestniczyła w Targach Efektywności Energetycznej i Budynków Energooszczędnych INFOENERGIA 2017

Wszystkie zainteresowane osoby zapraszamy do odwiedzin stoiska nr 4 firmy iBros technic. Podczas targów możliwe będzie obejrzenie i testowanie kamer termowizyjnych marki FLIR Systems, jak również wielu innych narzędzi kontrolno-pomiarowych dostępnych w ofercie iBros Technic.

 

Podczas targów zaprezentujemy najnowsze kamery termowizyjne i narzędzia testowo-pomiarowe marki FLIR Systems, mierniki do regulacji instalacji wentylacyjnych TSI oraz wiele innych urządzeń pomiarowych, jak kamery inspekcyjne czy pirometry termowizyjne. 

 

Zapraszamy w dniach 23-24 .02.2017 w godzinach 9.00 - 17.00.

Adres:      Międzynarodowe Centrum Kongresowe w Katowicach

                Plac Sławika i Antalla 1

                Wejście od strony ul. Olimpijskiej

 

infoenergia logo

Więcej o Targach InfoEnergia

 

Zewnętrzne systemy ociepleń stają się coraz bardziej popularne na europejskim rynku budowlanym. Wraz z powstaniem bardziej rygorystycznych wymagań certyfikacji energetycznej oraz przepisów w zakresie efektywności energetycznej budynków, konstruktorzy zwracają coraz większą uwagę na dokładne i efektywne stosowanie tych systemów. Niestety wiele metrów kwadratowych zewnętrznych systemów izolacji cieplnej w nowych lub istniejących budynkach zostały zainstalowane bez użycia najlepszych praktyk. W celu lepszego zrozumienia nieprawidłowości w systemach izolacji, jak również charakterystyki cieplnej produktów izolacyjnych, konsorcjum firm, w tym włoskie Stowarzyszenie Izolacji Cieplnej i Akustycznej (Association for Thermal and Acoustic Insulation - ANIT), przeprowadziło projekt badawczy z użyciem kamer termowizyjnych FLIR Systems.

Badania mające na celu uznanie nieprawidłowości w systemach izolacji oraz ich montażu zostały przeprowadzone przez ANIT i dwóch członków tej organizacji, a mianowicie firm: Caparol oraz FLIR Systems. Badanie było koordynowane przez Tep srl, przedsiębiorstwo usług inżynieryjnych, koncentrując się na badaniach nieniszczących efektywności energetycznej budynków.

Budowanie na próbę

W celu badania zjawisk cieplnych charakteryzujących instalację zewnętrznych systemów ociepleń, zbudowano egzemplarz testowy, pokryty z trzech stron płytą izolacji cieplnej (EPS z dodatkiem grafitu). W górnej części próbki ściany pokryte były w taki sposób, że posiadały typowe błędy wykonawcze. Dolna część była odpowiednio wykonana, z lub bez kołków EPS.

Aktywna analiza termograficzna

Próbka ściany monitorowana i analizowana była podczas cyklu ładowania i rozładowania przez energię słoneczną. Jej okresowe obrazy termiczne były rejestrowane i przechowywane. Dzięki aktywnej termografii, ładowanie odbywało się przez promieniowanie słoneczne i wywierało wpływ na powierzchnię próbki testowej. Podczas fazy rozładowania określana była struktura, w której gromadzona jest energia, a następnie monitorowano uwalnianie energii w cieniu. Do tego badania ANIT zdecydował się na użycie kamery termowizyjnej FLIR T640 , która okazała się być najlepiej dostosowana do tego typu badania.
FLIR IBROS próbka powierzchni termiczne systemy ociepleń

 

 

 

 

 

 

 

 

 

 

 

 Rys.1 Wzór układu testowego przed pokryciem.

Przenikanie ciepła w różnych warunkach

Aby prawidłowo zrozumieć to, co wydarzyło się w różnych przypadkach wskazanych na obrazie termograficznym, należy przeanalizować i poznać ewentualne anomalia, dotyczące wymiany ciepła w zmiennych warunkach na powierzchni izolacji.

Przy przepływie ciepła w zmiennych warunkach (tj. zmiennych temperaturach powierzchni) odporność termiczna przewodności właściwej i grubość każdego z tych materiałów nie są wystarczające do określenia właściwości termicznych różnych warstw. W rzeczywistości, należy również wziąć pod uwagę gęstość i ciepło właściwe materiałów. Parametry, które charakteryzują materiały w warunkach zmiennych połączonych z promieniowaniem struktury powierzchni zewnętrznej izolacji cieplnej są nazywane efektywnością termiczną.

Efektywność termiczna jest miarą zdolności cieplnej penetracji energii. Istotna jest: temperatura powierzchni zewnętrznej izolacji cieplnej, którą poddaje się silnemu wpływowi promieniowania słonecznego. Następnie bada się w jaki sposób materiał z poziomu powierzchni prowadzi ciepło do kolejnych warstw materiału w połączeniu ze zdolnością materiału do gromadzenia ciepła. Efektywność w tym kontekście wyraża się, jako łatwość materiału do ogrzewania, za pomocą promieniowania słonecznego wewnątrz: im niższa wartość, tym mniejsza jest ilość energii potrzebnej do ogrzewania materiału.

Próbka badawcza składa się z kilku materiałów o różnych wartościach efektywności cieplnej:

Klej do izolacji (EFR. = 906), EPS z dodatkiem grafitu (eff = 27) i PCV - z kołkami (eff = 530).

Wykres 1

Wykres 1 przedstawiający różnice temperatur, które występują na górnej części próbki podczas obciążeń termicznych, w których są obecne i celowe błędy instalacyjne.

Wykres 2
Wykres 2 temperatury prezentujący górną część próbki pokazuje, że nie ma materiału izolacyjnego o małej przewodności cieplnej, o ograniczonej pojemności cieplnej, kleju i kołków PVC, które mają wysoką przewodność cieplną oraz większą pojemność cieplną. Z uwagi na energię zmagazynowaną w wyniku promieniowania słonecznego izolacja chłodzi się szybciej, ponieważ ilość zmagazynowanej energii jest mniejsza to znaczy, że ma objętościowo mniejszą pojemność cieplną.

Analiza próbki

Analiza właściwości materiałów wykazuje różne zachowanie pod względem energii ładowania spowodowanego promieniowaniem i późniejsze opróżnienia energii wskutek cienia.

a) po naświetleniu promieniowaniem słonecznym stymulacja ogrzeje powierzchnię. PCW i klej, mają większą efektywność niż EPS, więc będą one początkowo chłodniejsze niż SWW i EPS ogrzeje się łatwiej. Kołki i odcinki klejone będą najzimniejszym punktem powierzchni.

b) Następnie badana próbka jest schładzana w cieniu. PVC i klej mają większą objętościową wydajność ciepła, dzięki temu te materiały zgromadziły więcej energii cieplnej, a tym samym będą początkowo cieplejsze niż EPS. Materiał EPS szybciej ostygnie; kołki i spoiny klejone będzią najgorętszymi punktami na powierzchni.

Analiza termiczna jasno określa, że istnieją dwa rodzaje warstw powierzchniowych:

materiał izolacyjny o małej przewodności cieplnej i ograniczonej pojemności cieplnej, klej i kołki PCV posiadające wyższą przewodność cieplną oraz większą pojemność cieplną. Podczas wykonywania analizy zdjęć termograficznych, osoba wykonująca pomiar musi być świadoma tego, co jest identyfikowane jako anomalia powierzchni: konieczne jest, aby zrozumieć, zewnętrzny system izolacji cieplnej, a to jak stwierdzono w odpowiednich warunkach środowiskowych, może być uważane jako wada.

FLIR IBROS próbka powierzchni termowizja termiczne systemy ociepleń

Kamera FLIR T640bx

ANIT zdecydował się na wykorzystaniekamery termowizyjnej FLIR T640bx z powodu różnych wymagań technicznych. Badanie próbki wymaga możliwości zbadania luki temperatury blisko 0,5 ° C, do rejestrowania i kontrolowania powierzchni automatycznej zmiany temperatury podczas upływu czasu. Potrzebny aparat również musi być w stanie generować wysokiej jakości obrazy wideo, które mogłyby aktywnie badać zachowania termiczne powierzchni.
FLIR iBros T640bx
Kamera FLIR T640bx idealnie się do tego nadaje. T640bx to wysokiej klasy kamera termowizyjna z wbudowaną wizualną kamerą o rozdzielczości 5MP, opcją wymiennych obiektywów, auto-focusem i dużym 4,3" ekranem dotykowym LCD. Łączy w sobie doskonałą ergonomię z najwyższą jakością obrazu, zapewniając wyrazistość i dokładność oraz rozbudowane możliwości komunikacyjne.

Rys.4 T640bx to wysokiej klasy kamera termowizyjna z wbudowaną kamerą o rozdzielczości 5MP światła widzialnego.

 

  Zapewnienie jakości ma fundamentalne znaczenie w systemach solarnych. Bezawaryjna praca paneli jest warunkiem efektywnego wytwarzania energii, długiej żywotności oraz szybkiego zwrotu inwestycji. Aby zapewnić bezawaryjną pracę, wymagana jest prosta i niezawodna metoda oceny wydajności panelu słonecznego zarówno w procesie produkcyjnym, jak i po montażu.  

 

 

 

FLIR iBros panele słoneczne

Zastosowanie kamer termowizyjnych w badaniach paneli słonecznych ma wiele zalet. Nieprawidłowości mogą być wyraźnie widoczne na ostrym obrazie termicznym oraz - w przeciwieństwie do większości innych metod - kamery termiczne mogą być używane do skanowania zainstalowanych paneli słonecznych, w czasie normalnej pracy. Wreszcie, kamery termowizyjne pozwalają skanować duże powierzchnie w krótkim czasie.FLIR iBros panele słoneczne cieplejsze miejsca

W dziedzinie badań i rozwoju kamery termowizyjne są narzędziem do oceny ogniw słonecznych i paneli. Dla tych skomplikowanych pomiarów, kamery o wysokiej wydajności, zwykle z chłodzonymi detektorami stosuje się w kontrolowanych warunkach laboratoryjnych.

Jednakże stosowanie kamer termowizyjnych do paneli słonecznych nie jest ograniczone tylko w dziedzinie badań. Kamery termowizyjne są obecnie coraz częściej używane do kontroli jakości paneli słonecznych przed instalacją oraz do badań kontrolnych i konserwacyjnych po zamontowaniu panelu. Kamery te są przenośne, lekkie i pozwalają na bardzo elastyczne wykorzystanie w terenie.

Za pomocą kamery termowizyjnej potencjalne obszary problemowe mogą być wykryte i naprawione przed wystąpieniem rzeczywistych problemów i awarii. Ale nie każda kamera termowizyjna jest przeznaczona do kontroli ogniw słonecznych. Są pewne zasady i wytyczne, które muszą być przestrzegane w celu przeprowadzenia skutecznych kontroli i wyciągnięcia właściwych wniosków. Przykłady w tym artykule są oparte na modułach fotowoltaicznych z krystalicznych ogniw słonecznych; jednak zasady i wytyczne mają również zastosowanie do kontroli termograficznych modułów cienkowarstwowych.

Procedury kontroli paneli słonecznych z kamer termowizyjnych
Podczas procesu rozwoju i produkcji komórki słoneczne są uruchamiane elektrycznie lub z wykorzystaniem lampy błyskowej. Gwarantuje to, że istnieje wystarczający kontrast termiczny do dokładnych pomiarów termowizyjnych. Metoda ta nie może być stosowana przy badaniu paneli słonecznych w tej dziedzinie, jednak operator musi upewnić się, że nie ma wystarczającej ilości energii dostarczonej przez Słońce.

Aby osiągnać wystarczający kontrast termiczny podczas sprawdzania ogniw słonecznych, potrzebne jest natężenie promieniowania słonecznego 500 W / m2 lub więcej. Dla maksymalnego efektu wskazane jest natężenie promieniowania słonecznego 700W / m2. Natężenie promieniowania słonecznego opisuje incydent chwilowej mocy na powierzchni w jednostkach kW / m2, która może być mierzona poprzez piranometr (globalne promieniowanie słoneczne)lub pyrheliometr (bezpośrednie promieniowanie słoneczne). To w dużym stopniu zależy od położenia i lokalnych warunków pogodowych. Niskie temperatury na zewnątrz mogą również zwiększyć kontrast termiczny.

Jaki typ aparatu jest potrzebny?
Przenośne kamery termowizyjne do predykcyjnych przeglądów serwisowych zazwyczaj mają niechłodzony detektor mikrobolometryczny w zakresie 8-14 mikrometrów. Jednak szkło nie jest przezroczyste w tym obszarze. Gdy ogniwa słoneczne są kontrolowane od przodu, kamera termowizyjna widzi dystrybucję ciepła na powierzchni szkła, ale tylko pośrednio dystrybucję ciepła w komórkach bazowych. Dlatego różnice temperatur, które mogą być mierzone i obserwowane na powierzchni panelu słonecznego są małe. Aby te różnice były widoczne, kamera termowizyjna wykorzystywana do tych kontroli potrzebuje czułości termicznej ≤0.08K. Do wyraźnej wizualizacji małych różnic temperatury w obrazie termicznym, aparat powinien mieć możliwość ręcznej regulacji poziomu i rozpiętości.

Moduły fotowoltaiczne są zwykle montowane na bardzo refleksyjnej konstrukcji aluminiowej, która przedstawia się jako zimny obszar na obrazie termicznym, ponieważ odbija promieniowanie cieplne emitowane przez niebo. W praktyce oznacza to, że kamera termowizyjna rejestruje temperaturę ramową znacznie poniżej 0 ° C. Ponieważ wyrównanie histogramu obrazowania kamery termicznej automatycznie dostosowuje się do maksymalnych i minimalnych temperatur, wiele małych anomalii termicznych nie będzie od razu widoczne. Aby osiągnąć wysoki kontrast obrazu termicznego będzie potrzebna ciągła ręczna korekcja poziomu i zakresu.

FLIR iBros panele słoneczne DDE

 Tzw. DDE (Digital Detail Enhancement) zapewnia funcjonalne rozwiązanie.DDE automatycznie optymalizuje kontrast obrazu w scenach z wysokim zakresem dynamiki, a obraz termiczny nie musi być regulowany ręcznie. Kamera termowizyjna z funkcją DDE idealnie nadaje się do szybkich i dokładnych kontroli paneli słonecznych.

Zdjęcie termowizyjne bez DDE (od lewej) i z DDE (od prawej)

Przydatne funkcje

Kolejną przydatną funkcją dla kamery termowizyjnej jest tagowanie zdjęć termalnych z danych GPS. Pozwala to na łatwe zlokalizowanie wadliwych modułów w dużych obszarach, np. w gospodarstwach słonecznych, a także odnoszenie obrazów termicznych do urządzeń, np. w raportach.

Kamera termowizyjna powinna mieć wbudowany aparat cyfrowy, który wiąże się z obrazem cyfrowym (cyfrowe zdjęcia) umożliwiając zapisywanie z powiązanego obrazu termicznego. Jest to tzw. tryb fuzji pozwalający na nakładanie obrazów cieplnych i wizualnych, które mogą być również użyteczne. Przy tworzeniu raportów mogą okazać się przydatne komentarze głosowe oraz tekstowe, które mogą być zapisywane w kamerze razem z obrazem termicznym. 

 

Ustawienie aparatu: odbicia i emisyjność
Mimo, że szkło ma emisyjność 0.85-0.90 w zakresie 8-14 mikrometrów, pomiary termiczne na powierzchni szkła nie są łatwe do zrobienia. Odbicia szklane są lustrzane, co oznacza, że otaczające przedmioty o różnych temperaturach mogą być wyraźnie widoczne w obrazie termicznym. W najgorszym przypadku powoduje to błędną interpretację (fałszywe "gorące punkty") oraz błędy pomiarowe.

Aby uniknąć odbicia kamery termowizyjnej i operatora w szkle, instrument nie powinien być ustawiony prostopadle do sprawdzanego modułu. Jednak emisyjność jest najwyższa, gdy kamera ustawiona jest prostopadłe, a zmniejsza się wraz ze wzrostem kąta. Dobrym rozwiązaniem jest kąt patrzenia 5-60 °.FLIR iBros Kąt padania

Kąt zależny od emisyjności szkła

Obserwacje długodystansowe
Nie zawsze łatwe jest osiągnięcie odpowiedniego kąta widzenia podczas pomiaru set-up. Korzystanie ze statywu może stanowić rozwiązanie tego problemu w większości przypadków. W trudniejszych warunkach może być konieczne skorzystanie z mobilnych platform roboczych, a nawet latanie helikopterem nad panelami słonecznymi. W tych przypadkach, większa odległość od celu może być korzystna, ponieważ większa powierzchnia może być postrzegana w jednym przejściu.

FLIR iBros Solar panel w tęczy W celu zapewnienia wysokiej jakości obrazu termicznego do badań na dłuższych dystansach, powinna być stosowana kamera termowizyjna o rozdzielczości obrazu co najmniej 320 × 240 pikseli, a najlepiej 640 × 480 piksel.

Kamera powinna mieć również wymienny obiektyw, dzięki czemu operator może przejść do teleobiektywu podczas obserwacji na dużą odległość, taką jak z helikoptera. Wskazane jest jednak, aby korzystać tylko z teleobiektywów kamer termowizyjnych, które mają wysoką rozdzielczość obrazu. Niska rozdzielczość kamery termowizyjnej w pomiarach z dużej odległości przy użyciu teleobiektywu nie będzie w stanie odebrać małych szczegółów, które wskazują błędy cieplne paneli słonecznych. Aby nie wyciągnąć fałszywych wniosków należy trzymać kamerę termowizyjną pod odpowiednim kątem podczas inspekcji paneli słonecznych.

Patrząc na to z innej perspektywy

W większości przypadków, zainstalowane moduły fotowoltaiczne mogą być kontrolowane za pomocą kamery termowizyjnej z tylnej części modułu. Metoda ta minimalizuje przeszkadzające odbicia od słońca i chmur. Ponadto, temperatury uzyskane z tyłu mogą być większe, a pomiar jest wykonywany bezpośrednio, a nie przez powierzchnię szkła.

Warunki otoczenia i pomiarów
Podejmując inspekcje termograficzne, niebo powinno być jasne, ponieważ chmury zmniejszają natężenie promieniowania słonecznego, a także powodują zakłócenia przez odbicia. Informacyjne obrazy mogą być jednak uzyskane nawet przy zachmurzonym niebie, pod warunkiem, że używana kamera termowizyjna jest wystarczająco czuła. Pożądane są spokojne warunki, ponieważ każdy strumień powietrza na powierzchni modułu słonecznego powoduje konwekcyjne chłodzenie, a tym samym zmniejsza się gradient temperatury. Niższe temperatury powietrza dają wyższy potencjał kontrastu cieplnego. Dobrym rozwiązaniem jest przeprowadzanie inspekcji termograficznych w godzinach porannych.

Innym sposobem, zwiększenia kontrastu termicznego jest odłączenie komórki od obciążenia, w celu uniemożliwienia przepływu prądu. Następnie, obciążenie jest podłączone, a komórki obserwuje się w fazie nagrzewania.

W normalnych okolicznościach system powinien być sprawdzany w naturalnych warunkach pracy, to znaczy pod obciążeniem. W zależności od typu komórki i rodzaju uszkodzenia lub awarii, pomiary mocy bez obciążenia lub warunków zwarciowych mogą dostarczyć dodatkowych informacji.

FLIR iBros panele słoneczne termowizja
Pirwszy obraz termograficzny pokazuje duże obszary o podwyższonej temperaturze. Bez większej liczby informacji nie wiemy czy są to nieprawidłowości termiczne czy cień lub refleksje. Kolejny termogram ukazuje tył modułu solarnego, obraz wykonany kamerą FLIR P660. Wizualny obraz tej sytuacji jest pokazany na kolejnym zdjęciu.

Błędy pomiaru
Błędy pomiaru wynikają przede wszystkim ze złego ustawienia kamery oraz panujących warunków otoczenia i pomiarowych.

Typowe błędy pomiarowe są spowodowane:

• zbyt płytkim kątem widzenia

• zmianą natężenia promieniowania słonecznego w czasie (z powodu zmian na niebie)

• odbiciami (np, słońce, chmury, okoliczne budynki o większej wysokości, pomiary set-up)

• częściowym zacienieniem (np. z powodu otaczających budynków lub innych budowli).

Co można zobaczyć w obrazie termicznym
Jeśli części panelu słonecznego są cieplejsze niż w innych miejscach, ciepłe obszary pojawią się wyraźnie w obrazie termicznym. W zależności od kształtu i położenia tych obszarów gorące plamy mogą wskazywać na wiele różnych wad. Jeżeli cały moduł jest cieplejszy niż zwykle może to wskazywać na występujące problemy.

Zacienienia i pęknięcia w komórkach pojawiają się jako gorące plamy lub wielokątne plamy w obrazie termicznym. Wzrost temperatury z komórki lub części komórki wskazuje na uszkodzoną komórkę lub zacienienia. Obrazy termiczne uzyskane pod obciążeniem, bez obciążenia oraz w warunkach zwarcia powinny być porównywane. Porównanie obrazów termicznych przednich i tylnych powierzchni modułu może dać cenne informacje. Oczywiście, dla prawidłowej identyfikacji awarii, moduły wykazujące anomalie muszą być testowane elektrycznie i poddane oględzinom.

Wnioski
Kontrola termowizyjna systemów fotowoltaicznych pozwala szybko lokalizować ewentualne uszkodzenia na poziomie komórek i modułów, jak również wykrycie ewentualnych problemów wzajemnych połączeń elektrycznych. Kontrole są przeprowadzane w normalnych warunkach pracy i nie wymagają zamykania systemu.

Dla prawidłowych i informacyjnych obrazów termicznych, obowiązują określone zasady i procedury pomiarowe:

• powinna być stosowana kamera termowizyjna z odpowiednimi akcesoriami;

• wymagane jest natężenie promieniowania słonecznego (co najmniej 500 W / m2 ; preferowane powyżej 700 W / m2);

• kąt widzenia musi być w bezpiecznym przedziale ( 5 ° - 60 °);

• należy zapobiegać zacienieniom i odbiciom

Kamery termowizyjne są wykorzystywane przede wszystkim do zlokalizowania usterki. Klasyfikacja i ocena wykrytych nieprawidłowości wymaga dogłębnego zrozumienia techniki solarnej, znajomości systemu kontroli i dodatkowych pomiarów elektrycznych. Właściwa dokumentacja jest oczywiście koniecznością i powinna zawierać wszystkie warunki kontroli, dodatkowe pomiary i inne istotne informacje.

Kontrole z kamery termowizyjnej – począwszy od kontroli jakości w fazie instalacji, kolejne regularne kontrole - ułatwiają proste monitorowanie stanu systemu. Pomaga to w utrzymaniu funkcjonalności paneli słonecznych i przedłuża ich żywotność. Za pomocą kamer termowizyjnych do kontroli kolektorów słonecznych można zdecydowanie przyspieszyć zwrot z wykonanej inwestycji.

Typ błędu

Przykład

Pojawia się w obrazie termicznym jako

Wada produkcyjna

Zanieczyszczenia i pęcherze gazowe

"gorące punkty" lub "zimne punkty"

Pęknięcia w komórkach

Ogrzewanie komórek,

forma głównie wydłużona

Uszkodzenia

Pęknięcia

Ogrzewanie komórek, forma głównie wydłużona

Pęknięcia w komórkach

Część komórki wydaje się gorętsza

Tymczasowe zacienienie

skażenie

Gorące miejsca

Ptasie odchody

wilgotność

Uszkodzona dioda bypass

(powoduje zwarcia i

zmniejsza ochronę obwodu)

N.a.

"wzorzec patchwork"

Wadliwe połączenia

Moduł lub ciąg modułów nie podłączony

Moduł lub ciąg modułów jest stale cieplejsze

Tabela 1: Lista typowych błędów modułu (Źródło: ZAE Bayern eV "Überprüfung der qualität von Photovoltaik- Modulen Infrarot-Aufnahmen mittels" ["Badania jakości w modułów fotowoltaicznych przy użyciu obrazowania w podczerwieni"], 2007)

 

 

Dzięki kamerom termowizyjnym firmy FLIR uczniowie poznają zagadnienia ciepła i temperatury na interaktywnych i wciągających zajęciach. Zamiast czytać w podręcznikach o tarciu, zobaczą, jak to działa w rzeczywistości. Zamiast teoretycznych lekcji czy wykładów o izolacji praktycznie wykryją miejsca i poziom strat ciepła. 

 

 

 

FLIR C3 WiFi Education

Doskonałe narzędzie do wizualizacji temperatury 

FLIR C3 to wielofunkcyjna kieszonkowa kamera termowizyjna. Jest to doskonałe, przystępne cenowo, lekkie i niewielkie narzędzie dla nauczycieli i wykładowców. Rozdzielczość obrazu termowizyjnego FLIR C3 to 80 x 60 pikseli. 

Odczyt temperatury odbywa się za pośrednictwem 4800 pikseli. Obrazy można zapisywać i wyświetlać w kamerze, w celu ich dalszej analizy. Ponadto C3 jest wyposażona w łączność WiFi. W skład zestawu wchodzi oprogramowanie do transmisji i zapisywania filmów termowizyjnych w czasie rzeczywistym. Oprogramowanie umożliwia też komputerową analizę zarejestrowanych danych i raportowanie.

 

FLIR EDU C3

Zawartość zestawu FLIR C3 WiFi Education:

  • Kamera termowizyjna FLIR C3
  • Mocowanie statywu
  • Oprogramowanie FLIR Tools
  • Dostęp do pakietu edukacyjnego FLIR, w tym wykładów, eksperymentów i przewodników dla nauczyciela

 

 

Najważniejsze cechy: 

FLIR C3 edu

  • Lekka i płaska konstrukcja
  • Jasny, 3-calowy ekran dotykowy
  • Wbudowane oświetlenie i lampa błyskowa LED
  • Duży przycisk migawki zapisuje obraz termowizyjny, widzialny i MSX w pliku JPEG
  • Przycisk włączania/ wyłączania jest łatwo dostępny i szybko uruchamia urządzenie
  • Przesyłanie plików i transmisja danych przez gniazdo Micro USB typu B
  • Kamera światła widzialnego
  • Kamera termowizyjna
  • Intuicyjny interfejs użytkownika i możliwość zmiany ustawień kamery

 

 

FLIR E6 / E60 WiFi Education 

FLIR EDU E6 E60Uczniowie i termowizja = potęga bez granic 

Kamera termowizyjna FLIR to obecnie jedno z najlepszych i najbardziej wszechstronnych narzędzi do rozwiązywania problemów dla profesjonalistów. Dzięki nowym modelom FLIR E6 WiFi oraz E60 WiFi uczniowie odkrywają, jak termowizja pomaga zidentyfikować niewidoczne w normalnych warunkach problemy. Ta nowoczesna technologia pozwala im rozwinąć nowe umiejętności i uzyskać przewagę na rynku pracy.

 

Nowa kamera FLIR E6 WiFi Education - to jedna z najbardziej przystępnych cenowo kamer FLIR do kontroli budynków i instalacji elektrycznych, badania sprawności energetycznej, remontów i testów bezpieczeństwa.

 

Nowa kamera FLIR E60 WiFi Education - uniwersalna i wyjątkowa kamera termowizyjna do utrzymania ruchu obiektów przemysłowych.

 

 

                                  FLIR E6 edu                                                                     FLIR E60 edu

FLIR E6 WiFi

FLIR E60 WiFi

 

- Rozdzielczość termowizji 160 x 120 zgodna z normą RESNET

 

 

- Pole widzenia o szerokości 45° zapewniające większą perspektywę

 

 

- Technologia MSX wzbogacania obrazu termowizyjnego o elementy widzialne

 

- Obiektyw o stałej ogniskowej i jasny wyświetlacz LCD

 

- Wspaniała rozdzielczość termowizyjna 320 x 240 wspomagana MSX

 

 

- Komunikacja z urządzeniami przenośnymi w celu szybkiego udostępniania obrazów za pomocą Wi-Fi

 

 

- Wyjście wideo do podłączania monitorów i rejestratorów w celu wyświetlania i tworzenia dokumentacji

 

- Łącze danych MeterLink pozwalające na współpracę z miernikami cęgowymi i wilgotnościomierzami marki FLIR

 

 

Narzędzia testowo-pomiarowe FLIR z IGM 

Pracuj mądrze i bezpiecznie  

Narzędzia FLIR z technologią IGM (infrared Guided Measurement - pomiar wspomagany podczerwienią) pozwalają na szybką i precyzyjną lokalizację anomalii temperaturowych, pierwszą oznakę niekorzystnych zmian. Z IGM identyfikowanie problemów zanim staną się realnym zagrożeniem jest szybsze i sprawniejsze, co pozwala bezpieczniej wykonywać kolejne zadania. 

 

FLIR IGM eduWilgotnościomierze z technologią IGM

Wilgotnościomierze wykonują pomiary wilgotności pod powierzchniami materiałów, w sposób stykowy lub przy użyciu sondy przewodowej z ostrymi końcówkami.

 

Mierniki cęgowe z technologią IGM

Miernik cęgowy z technologią IGM umożliwia szybsze i bezpieczniejsze znalezienie przegrzewających się elementów instalacji elektrycznej bez konieczności bezpośredniego kontaktu z badanym obiektem. 

 

Pirometry z technologią IGM

Pirometry z technologią IGM stanowią udane połączenie funkcjonalności dostępnych obecnie pirometrów na podczerwień, które generują obrazy oraz kamer termowizyjnych FLIR.

 

Mierniki uniwersalne z technologią IGM

Mierniki uniwersalne z fnkcją IGM to zintegrowane cyfrowe mieniki z pomiarem rzeczywistej wartości skutecznej i modułem termowizyjnym, który umożliwia precyzyjną lokalizację problemów elektrycznych.

 

 

Narzędzia testowo-pomiarowe FLIR 

Innowacja sprawdzona w praktyce  

Rodzina narzędzi testowo- pomiarowych jest dowodem praktycznej realizacji polityki firmy FLIR w tworzeniu innowacyjnych, niezawodnych produktów wysokiej jakości. Elektrycy doceniają uniwersalne mierniki cyfrowe, cęgowe mierniki zasilania, elastyczne mierniki cęgowe, wykrywacze napięcia i wideoskopy firmy FLIR. Specjaliści z branży budowlanej natomiast korzystają z szerokiej gamy wilgotnościomierzy, wideoskopów i wykrywaczy napięcia.

 FLIR TM edu

Seria cęgowych mierników zasilania FLIR CM

Rodzina cęgowych mierników zasilania klasy przemysłowej FLIR umożliwia zaawansowaną analizę sieci energetycznej i diagnostykę napędów z przemiennikami częstotliwości (VFD).

 

FLIR CM55 i CM57 - Elastyczne mierniki cęgowe

Elastyczne mierniki cęgowe FLIR wyposażone w Bluetooth mają wąskie, elastyczne szczęki, pozwalające na pomiary w ciasnych lub niewygodnych punktach.

 

FLIR DM92/93 - Przemysłowe mierniki uniwersalne z pomiarem rzeczywistej wartości skutecznej

Cyfrowe mierniki uniwersalne firmy FLIR, oferują zaawansowane filtrowanie napędów z przetwornicami częstotliwości, aby badać nietypowe przebiegi sinusoidalne i zaszumione sygnały.

 

FLIR VP52 - Wykrywacz napięcia

FLIR VP52 to wytrzymały bezstykowy wykrywacz napięcia zgodny z kategorią CAT IV, wyposażony w alarm wibracyjny i sygnalizację LED, mocną latarkę LED i różne zakresy wykrywanego napięcia. 

 

 

Wideoskop FLIR VS70 

Pozwala na manewrowanie w trudno dostępnych miejscach, aby wykrywać i rozwiązywać ukryte problemy  

FLIR VS70 eduFLIR VS70 to wytrzymały, wodo- i wstrząsoodporny wideoskop pozwalający użytkownikowi manewrować sondą kamery w ciasnych przestrzeniach i wyświetlać wysokiej jakości obrazy oraz wideo na dużym 5,7'' kolorowym wyświetlaczu LCD. Zaawansowane rozwiązania do inspekcji, moduły rozszerzeń z kamerami oraz dodatkowe akcesoria pozwalają użytkownikom na rozbudowę FLIR VS70 i wykonywanie różnych typów kontroli.

  • Zapis tysięcy zdjęć i godzin filmów na standardowej karcie SD
  • Prezentowanie zdjęć z zarejestrowanych filmów bezpośrednio na głównym urządzeniu
  • Dodawanie komentarzy głosowych objaśniających wyniki i ograniczających konieczność pisania notatek

FLIR VS70 Apl

 

 

 

Aby uzyskać więcej informacji o promocji oraz ceny urządzeń skontaktuj się z iBros technic.

 

 

 

Kontakt dystrybutor FLIR w Polsce

©iBros. Wszelkie prawa zastrzeżone.