FLIR & iBros technic bezpośredni dystrybutor urządzeń omiarowych - kamery termowizyjne FLIR Systems w Polsce

Switch to desktop Register Login

 Nowa Linia IGM

 

PRACA BEZ IGM TO STRZELANIE W CIEMNO - NOWA LINIA IGM

Firma FLIR jest znana z szerokiej oferty kamer termowizyjnych. Tę samą technologię podczerwieni zastosowaliśmy w narzędziach testowo-pomiarowych. Nazywamy ją IGM, od angielskiego Infrared Guided Measurement - pomiar wspomagany podczerwienią. Ta technologia całkowicie zmienia sposób diagnozowania usterek instalacji elektrycznych i problemów konstrukcyjnych w budynkach.

 

DM285 DM284 DM166

Termowizyjne mierniki uniwersalne TRMS - DM285, DM284 i DM166

Cyfrowe mierniki uniwersalne DM166, DM284 i DM285 firmy FLIR mają wbudowany ekran, na którym wyświetlają nadmiernie rozgrzane elementy elektryczne. Dzięki temu elektrycy szybciej i bezpieczniej diagnozują usterki.

  • Wygodne narzędzia diagnostyczne FLIR DM284 / DM285 łączą termowizję z szeregiem funkcji cyfrowego miernika uniwersalnego. DM285 ma też możliwość bezprzewodowego połączenia z pakietem narzędzi FLIR Tools lub z nową aplikacją do zarządzania przepływem pracy FLIR InSite.
  • FLIR DM166 - najbardziej przystępne cenowo połączenie cyfrowego miernika wielofunkcyjnego i kamery termowizyjnej zawiera szeroką gamę funkcji miernika, a jego elastyczność umożliwia stosowanie w instalacjach wysoko- i niskonapięciowych.

 

CĘGI JAK DODATKOWA PARA OCZU

CM174 CM275

 

FLIR CM174 i CM275

Mierniki cęgowe FLIR CM174 i CM275 to połączenie zalet IGM z różnymi funkcjami pomiarów elektrycznych. Ich zastosowanie pozwala na wizualną diagnostykę usterek instalacji elektrycznych i szybkie rozwiązywanie złożonych problemów. CM275 ma też możliwość bezprzewodowego połączenia z pakietem narzędzi FLIR Tools lub z aplikacją do zarządzania przepływem pracy FLIR InSite.

 

 

 

 

PIROMETRY Z PODGLĄDEM TERMOWIZYJNYM 

TG165 TG167FLIR TG165 / TG167

Pirometry TG165/ TG167 firmy FLIR z pomiarem punktowym wypełniają lukę pomiędzy standardowymi pirometrami i kamerami termowizyjnymi. 

  • Błyskawicznie pokazują gorące miejsca, na które należy skierować urządzenie
  • Koniec z domyślaniem się
  • Stosunek odległości do średnicy plamki pomiarowej 24:1 umożliwia bezpieczny pomiar z odległosci

 

CAŁKOWICIE NOWATORSKI WILGOTNOŚCIOMIERZ

MR160 MR176

FLIR MR160 / MR176

FLIR MR160 i MR176 wyświetlają normalnie niewidoczne rozkłady obszarów o niższej temperaturze, związane z parowaniem wilgoci. Pokazują dokładną lokalizację miejsca, które trzeba dokładniej skontrolować.

  • Kolorowy ekran LCD 80x60
  • Pomiar stykowy i bezstykowy
  • Laser i celownik ułatwiające ustalanie problematycznych miejsc

 


 

 

mierniki uniwersalne FLIR

 

NARZĘDZIA NUMER JEDEN DO DIAGNOZOWANIA USTEREK

Mierniki uniwersalne FLIR

FLIR DM90 / DM91 - Multimetr TRMS z termoparą typu K

Szybkie i bezpieczne diagnozowanie usterek w instalacjach elektrycznych, elektronicznych, ogrzewania, wentylacji i klimatyzacji dzięki FLIR DM90 i DM91.

DM90 DM91

  • Pomiar rzeczywistej wartości skutecznej (TRMS), pomiar przy niskiej impedancji (LoZ), tryb do badania napędów z przemiennikami częstotliwości (VFD), μA itd.
  • Bezpieczeństwo kat. IV-600 V, kat. III-1000 V
  • Tylko DM91: Łączność Bluetooth z kamerami FLIR oraz smartfonami i tabletami z pakietem FLIR Tools lub systemem do zarządzania przepływem pracy FLIR InSite

 

 

FLIR DM62 / DM64 / DM66 - Profesjonalne cyfrowe mierniki uniwersalne

Nowa linia cyfrowych mierników uniwersalnych FLIR jest wyposażona w szeroką gamę funkcji, które umożliwiają szybsze i wydajniejsze diagnozowanie usterek, przy zachowaniu bezpieczeństwa pracownika.DM62 DM64 DM66

  • DM62: Miernik uniwersalny z pomiarem rzeczywistej wartości skutecznej (TRMS)
  • DM64: Miernik uniwersalny do układów ogrzewania, wentylacji i klimatyzacji
  • DM66: Multimetr cyfrowy do automatyzacji pracy w terenie i kontroli elektroniki

 

mierniki cęgowe FLIR

 

MIERNIKI CĘGOWE FLIR

CM4xFLIR CM4X

Mierniki cęgowe z końcówką Accu-Tip 

W skład rodziny FLIR CM4X 400A AC wchodzą trzy mierniki TRMS, zarówno profesjonalne, jak i budżetowe.

  • Miernik cęgowy AM42 AC
  • Miernik cęgowy CM44 AC z termoparą typu K
  • Miernik cęgowy CM46 AC/DC z termoparą typu K

 

CM72 CM74

FLIR CM72 / CM74

Komercyjne mierniki cęgowe

Mierniki cęgowe FLIR CM72 600A AC i CM74 600A AC/DC ułatwiają dostęp do okablowania w trudno dostępnych miejscach.

  • Wąskie szczęki
  • Silne światło robocze LED
  • Automatyczny wybór zakresu, pomiar rzeczywistej wartości skutecznej, pomiar prądu rozruchowego (tylko CM74), tryb VFD (tylko CM74)

 

CM78

FLIR CM78 PRZEMYSŁOWY MIERNIK CĘGOWY

FLIR CM78 to miernik cęgowy 1000A klasy przemysłowej z funkcją TRMS, umożliwiający bezpieczną pracę ze sprzętem pod wysokim napięciem i działającym w wysokich temperaturach.

  • Termometr na podczerwień wykonujący pomiar temperatury punktu wskazanego laserem
  • Pomiar prądu stałego i zmiennego
  • Termozłącze typu K

 

CM82 CM83 CM85FLIR CM82 / CM83 / CM85

Mierniki cęgowe TRMS

FLIR CM82, CM83 i CM85 600A AC to mierniki cęgowe klasy przemysłowej, z zaawansowaną analizą mierzonego prądu i filtrowaniem VFD.

  • Łączność Bluetooth umożliwiająca zdalne wyświetlanie na urządzeniach przenośnych
  • METERLiNK do osadzania odczytów w obrazach termowizyjnych
  • Zaliczony test odporności na upadek z wysokości 2 metrów

 

 

BEZSTYKOWY DETEKTOR NAPIĘCIA Z PODŚWIETLENIEM

VP52

FLIR VP52

FLIR VP52 to wytrzymały bezstykowy wykrywacz napięcia zgodny z kategorią CAT IV, wyposażony w połączone alarmy: wibracyjny i sygnalizację czerwoną diodą LED, mocną latarkę LED i różne zakresy wykrywanego napięcia.

  • Wytrzymałość i niezawodność; zaliczony test odporności na upadek z 3 metrów
  • Niskoprofilowa sonda umożliwia większe przybliżenie czujnika do źródeł prądu
  • Zapobiegająca toczeniu się obudowa z podwójnym odlewanym antypoślizgowym uchwytem

 

 nowatorskie wilgotnościomierze FLIR

 

WILGOTNOŚCIOMIERZE FLIR - WSZYSTKIE FUNKCJE, KTÓRYCH POTRZEBUJESZ

FLIR MR40

MR40

FLIR MR40 to kieszonkowy, przenośny, wytrzymały, dwustykowy wilgotnościomierz z pojedynczą skalą i zintegrowaną latarką.

  • Wykrywanie wilgoci w drewnie i bateriałach budowlanych
  • Inspekcje budowlane
  • Osuszanie
  • Kontrola szkodników
  • Dachy i podłogi w budynkach mieszkalnych

 

 

FLIR MR60

MR60

FLIR MR60 PRO to łatwy w obsłudze wilgotnościomierz z opcją pomiaru stykowego i bezstykowego, wyposażony w zaawansowane funkcje i kolorowy wyświetlacz. Zintegrowany bezkontaktowy czujnik oraz zewnętrzna sonda kontaktowa zapewniają elastyczność pozwalającą na pomiary zarówno z ingerencją w mierzony obszar, jak i bez ingerencji (pomiary nieniszczące).

  • Osuszanie
  • Ogrzewanie, wentylacja, klimatyzacja

 

 

 

OKIENKA INSPEKCYJNE PODCZERWIENI

IRW SeriesOkienka z anodyzowanego aluminium lub stali nierdzewnej z PIRma-Lock

Okienka inspekcyjne IRW-Seriers firmy FLIR oddzielają pracownika od sprzętu pod wysokim napięciem, chroniąc przed wypadkami spowodowanymi przez łuk elektryczny. Można wybrać ramę z anodyzowanego aluminium lub wytrzymałej stali nierdzewnej, aby zapobiec problemom na styku różnych metali.

 

IRW okna inspekcyjne

 

 

  • Łatwa instalacja i eksploatacja
  • Opcja ze stali nierdzewnej
  • Certyfikat bezpieczeństwa

 

 

 

WIDEOSKOP

VS70FLIR VS70

FLIR VS70 to wzmocniony, wodoodporny i wytrzymały na uderzenia wideoskop z manipulatorem ręcznym, który pozwala użytkownikowi manewrować wąską sondą kamery w ciasnych miejscach. Zaawansowane rozwiązania do inspekcji, moduły rozszerzeń z kamerami oraz dodatkowe akcesoria pozwalają użytkownikom na wykonywanie róźnych typów kontroli. 

  • Wąskie kamery umożliwiające dostęp do ciasnych miejsc
  • Duży kolorowy wyświetlacz LCD 5,7''
  • Łatwe dodawanie notatek głosowych

 wideoskop vs70

 

 

FLIR iBros Super okazje

Zapraszamy do kontaktu. Odpowiemy na pytania, pomożemy w doborze! 

+48 12 3767051   Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.

FLIR iBros Super okazje

 

PRACA BEZ IGM TO STRZELANIE W CIEMNO
Firma FLIR jest znana z szerokiej oferty kamer termowizyjnych. Tę samą technologię podczerwieni
zastosowaliśmy w narzędziach testowo-pomiarowych. Nazywamy ją IGM, od angielskiego
Infrared Guided Measurement – pomiar wspomagany podczerwienią. Ta technologia całkowicie
zmienia sposób diagnozowania usterek instalacji elektrycznych i problemów konstrukcyjnych w
budynkach.
CĘGI JAK DODATKOWA
PARA OCZU
Mierniki cęgowe FLIR CM174 i CM275 to połączenie
zalet IGM z różnymi funkcjami pomiarów elektrycznych.
Ich zastosowanie pozwala na wizualną diagnostykę
usterek instalacji elektrycznych i szybkie rozwiązywanie
złożonych problemów. CM275 ma też możliwość
bezprzewodowego połączenia z pakietem narzędzi FLIR
Tools lub z aplikacją do zarządzania przepływem pracy
FLIR InSite.
KAMERY TERMOWIZYJNE Z
PIROMETRAMI
Kamera termowizyjna TG165/TG167 firmy FLIR
z pomiarem w punkcie wypełnia lukę między pirometrami
i legendarnymi już kamerami termowizyjnymi FLIR.
• Błyskawicznie pokazuje gorące miejsca, na które
należy skierować urządzenie
• Koniec z domyślaniem się
• Stosunek odległości do średnicy plamki pomiarowej
24:1 umożliwia bezpieczny pomiar z odległości
CAŁKOWICIE
NOWATORSKI
WILGOTNOŚCIOMIERZ
FLIR MR160 i MR176
wyświetlają normalnie
niewidoczne rozkłady obszarów
o niższej temperaturze,
związane z parowaniem wilgoci.
Pokazują dokładną lokalizację
miejsca, które trzeba dokładniej
skontrolować.
• Kolorowy ekran LCD
80×60
• Pomiar stykowy i
bezstykowy
• Laser i celownik
ułatwiające ustalanie
problematycznych
miejsc
Termowizyjne mierniki uniwersalne TRMS – DM285, DM284 i
DM166
Cyfrowe mierniki uniwersalne DM166, DM284 i DM285 firmy FLIR mają
wbudowany ekran, na którym wyświetlają nadmiernie rozgrzane elementy
elektryczne. Dzięki temu elektrycy szybciej i bezpieczniej diagnozują usterki.
• Wygodne narzędzia diagnostyczne FLIR DM284/DM285 łączą termowizję z
szeregiem funkcji cyfrowego miernika uniwersalnego.
DM285 ma też możliwość bezprzewodowego połączenia z pakietem narzędzi
FLIR Tools lub z nową aplikacją do zarządzania przepływem pracy FLIR
InSite™.
• FLIR DM166: Najbardziej przystępne cenowo połączenie cyfrowego miernika
wielofunkcyjnego i kamery termowizyjnej zawiera szeroką gamę funkcji
miernika, a jego elas

 

 

 

Szanowni Państwo, 

W dniach 30.01-02.02.2018 r. firmy FLIR Systems i iBros technic wezmą udział w Międzynarodowych Targach Budownictwa i Architektury BUDMA 2018. Podczas targów zostaną zaprezentowane najnowsze modele kamer termowizyjnych oraz narzędzi testowo-pomiarowych z innowacyjną funkcją IGM™ (pomiar wspomagany podczerwienią).

Odwiedzając stoisko FLIR Systems oraz iBros technic będą mogli Państwo zapoznać się m. in. z najnowszymi kamerami termowizyjnymi serii Exx 2017 (E75, E85, E95) T5xx (T530 oraz T540), jak również z miernikami takimi jak wilgotnościomierz termowizyjny FLIR MR176™.

 

Odwiedź nasze stoisko targowe:  Pawilon 4, stoisko nr 15

 

Do zobaczenia!

 

Profesjonalna firma kontroli szkodników, Termite Solutions, posiada chwytliwe hasło: "Jeśli nie widziałeś termicznie, widziałeś tylko połowę obrazu."

Technologia podczerwieni posiada szeroką gamę zastosowań w środowiskach domowych, jak i w przemyśle.
Termite Solutions w Queensland w Australii specjalizuje się w kontroli związanej z termitami od 1996 roku, a pracę z wykorzystaniem kamery termowizyjnej FLIR rozpoczęli w roku 2005.
"Dla naszej firmy zaczęła się odyseja w innowacjach. Kamera termowizyjna FLIR stała się standardową częścią naszego sprzętu i teraz nie możemy wyobrazić sobie pracy bez tego urządzenia ", mówi Mal Brewer, właściciel Termite Solution.

Najgorszy koszmar właścicieli domu do wynajęcia

Termity są wyłącznie podziemnymi gatunkami, muszą wytrzymać bardzo specyficzne warunki środowiskowe."Kiedy termity wprowadzą się do mieszkania, to natychmiast nawilżamy obszary w których żyją i aktywnie regulujemy temperaturę" -wyjaśnia Mal Brewer.
"Jest pewne, że kamery termowizyjne FLIR są idealnie dostosowane do wykrywania różnic temperatur. Przykładowo kamera termowizyjna FLIR serii E ma odpowiednią rozdzielczość i zakres termiczny aby wykryć nawet bardzo niewielkie różnice temperatury, a co za tym idzie również termity. Stałe regulowanie temperatury i wilgotności powietrza sprawia, że możliwe jest wczesne wykrycie tych insektów za pomocą termografii.

FLIR iBros termowizja Termite solution
W zależności od warunków atmosferycznych, termity mogą się pojawić, gdy jest gorąco w zimie, lub gdy zimno latem, wiosną i jesienią. W wielu typach domów termit zaatakuje ściany, ale zostanie niezauważony. Może wtedy pozostać niewykryty przez wiele miesięcy, powodując znaczne uszkodzenia konstrukcji. Jak temu zapobiec?  Australijczycy wydają miliony dolarów każdego roku na wykrywanie termitów i naprawę szkód przez nie spowodowanych.
Są one najgorszym koszmarem dla właściciela domu do wynajęcia. Odkrycie termitów zanim będą widoczne gołym okiem pozwala zaoszczędzić tysiące dolarów właścicielom domów. 

Odkrycie World of Infrared

"Powtórnie w 2004 roku dowiedziałem się, że kamera termowizyjna była używana przez kilka międzypaństwowych inspektorów do wykrywania szkodników, więc zadzwoniłem do niektórych z nich. Operatorzy wtedy nie mieli żadnych kwalifikacji i powiedzieli, że wykorzystają swoje kamery od czasu do czasu, ale w zasadzie były zakupione w celu uzyskania przewagi rynkowej nad konkurencją ", wyjaśnia Mal.
"Kupiłem swoją pierwszą kamerę termowizyjną w 2005 roku i szybko okazało się, że nie tylko mamy przewagę marketingową, ale w rzeczywistości kamera jest nieocenionym narzędziem diagnostycznym do wykrywania insektów. Odkryliśmy, że niektóre kwestie zwiazane z występowaniem termitów były przez inspektorów niezauważane i omijane. "Nakłady finansowe mojej pierwszej kamery FLIR szybko się zwróciły. Okazało się, że klienci docenili nasz profesjonalizm i inwestowanie w najnowsze technologie, a stawki były znacznie częściej akceptowane, gdy zaczęliśmy używać kamer termowizyjnych. Mal mówi: „Zdałem sobie sprawę, jakie korzyści przyniosło zastosowanie  kamery termowizyjnej FLIR w mojej firmie.”

FLIR iBros termowizja do szukania termitów 1
                                    Obraz termiczny z dużą "paczką" termitów                                                  Termity za gzymsem, pokazane z IR Fusion
FLIR iBros termowizja do szukania termitów 2
                     Termicie gniazdo znalezione w drzewie za pomocą termowizji                                                                 Termity pod podłogą
FLIR iBros termowizja do szukania termitów 3
                                         Obraz termiczny ściany łazienki                                                                                            Termity za wanną

Utrzymanie klienta

"Zawsze staramy się zaangażować naszych klientów na początku kontroli, aby pokazać im korzyści wizualne jakie uzyskujemy przy użyciu obrazowania termicznego. Mamy chwytliwe hasło "Jeśli nie widziałeś termicznie, widziałeś tylko połowę obrazu". Nasi klienci zazwyczaj pytają nas o wykorzystanie kamery termowizyjnej do swoich rocznych przeglądów.
Jeżeli nie jesteś zadowolony z inspekcji bez kamery termowizyjnej, gwarantujesz ciągłą pracę dla nas. "Termite Solution także korzysta z termowizji do monitorowania stanu, poprzez porównanie aktualnych obrazów z obrazami powstałymi z poprzednich kontroli.
"Używam FLIR Professional Reporter wraz z oprogramowaniem FLIR Tools na komputerze biurowym," mówi Mal "Korzystam również z FLIR Viewer na moim iPad'zie i FLIR Tools na moim Smartphone. Wykonywanie sprawozdań za pocoą oprogramowania jest wyczerpujące, ale istnieje mnóstwo dostępnych filmów instruktażowych, pomocnych w uzyskaniu najlepszych wyników. Gotowe raporty wyglądają świetnie, a zdjęcia mogą być nawet wysłane bezpośrednio do klienta z urządzenia Apple lub Android, bezpośrednio z miejsca pracy. "
Termite Solution znalazło również zastosowanie funkcji Wi-Fi kamery termowizyjnej FLIR "są one szczególnie ważne podczas inspekcji nieruchomości inwestycyjnych międzypaństwowych lub dla zagranicznych klientów. "Zdjęcia mogą być zapisywane w kamerze, przesłane w chmurze, lub pocztą bezpośrednio do klienta. Pozwala nam tona bardzo łatwe i dokładne wyjaśnienie właścicielowi tego, co się dzieje, nawet w przypadku gdy dzielą nas tysiące kilometrów ", mówi Mal.

FLIR iBros termowizja i drewniane robaki

Szkolenie jest kluczem

Mal Brawer skupia uwagę na pokazaniu łatwości w obsłudze kamery FLIR. Tylko z wymaganym podstawowym szkoleniem, możliwe będzie rozpoczęcie badania z wykorzystaniem kamery termowizyjnej. "Jeśli używasz kamery do celów handlowych", mówi Mal ", to istotne jest, żeby być odpowiednio przygotowanym do interpretacji obrazów i prawidłowo opisywać je w raportach. Niewiedza może być niebezpieczna, dla prawidłowej interpretacji obrazów. Często ma to miejsce w przypadku niedoświadczonych lub nieprzeszkolonych operatorów. Ja zachęcam każdego, kto rozważa zakup kamery do udziału w szkoleniu". Mal Brewer ukończył Poziom 1 kursu termografii na Uniwersytecie w Melbourne w 2004 roku, kilka lat póżniej kurs Melbourne FLIR dla Pest Menedżerów, oraz brał udział w kursie termografii Science w 2013 roku. Wszyscy technicy Termite Solution uczestniczyli w kursach FLIR i są przeszkoleni w zakresie korzystania z kamery termowizyjnej i tworzenia raportów termicznych.

 

Zaleta termiczna

Potrzebne narzędzia dla inspektorów szkodników zawierają latarki, lornetki, narzędzie do stukania i miernik wilgoci. "Przy użyciu kamery termowizyjnej FLIR można znaleźć mało inwazyjne grupy szkodników, często dużo wcześniej niż ich obecność można wykryć gołym okiem lub za pomocą konwencjonalnych metod za pomocą wykorzystania narzędzi do gwintowania otworów i mierników wilgotności." Kamera termiczna pozwala inspektorowi na szybkie skanowanie budynków oraz obszarów, które są poza zasięgiem inspektora, na przykład wysokie sufity. Każdy z inspektorów Termite Solution może sprawdzić aż pięć domów dziennie. "Możemy skanować duże obszary budynków bardzo szybko i ze znacznie większą dokładnością niż przed zastosowaniem kamer termowizyjnych FLIR", mówi Mal. Termite Solution zakupił cztery kamery FLIR od 2005 - B2, E300, E60Bx i E8. Wszystkie urządzenia są nadal sprawne, gotowe do użytku i w dobrym stanie technicznym. Ulubioną kamerą Mal'a jest jego E60Bx, ze względu na dużą rozdzielczość aparatu i jego zdolność do nagrywania cyfrowych i termicznych obrazów i wideo. "Nasi klienci znajdują w technologii MSX realną pomoc, aby lepiej zrozumieć obrazy i raporty", mówi Mal. "Kamery termowizyjne FLIR są bardzo trwałe i zawsze niezawodne. Mają dobrą szybkość wideo, dobrą rozdzielczość oraz zaskakującą żywotność baterii. Obrazy są ostre, łatwe do pobrania i dobrze widoczne w raportach. "

FLIR iBros termowizja poszukująć korników 1
                                        Pakiet termitów w ścianie sypialni.                                                        Termity za tą ścianą.                              

FLIR iBros termowizja poszukująć korników

                                       Termity przed i po leczeniu w ścianie łazienki.                                         Opos w jamie dachu.                            Identyfikacja konstrukcji stropu

Zwiększenie serwisu dzięki termowizji

"Podczas kontroli przy użyciu kamery termowizyjnej często odkrywamy wadliwe kwestie wykonawcze" stwierdza, Mal. "Czasami podczas naszej kontroli zidentyfikowaliśmy problemy elektryczne w budynkach, które mogłyby mieć poważne konsekwencje." Teraz Termite Solution oferuje nie tylko kontrolę szkodników, ale także usługę nadzoru budowlanego, diagnozowanie usterek budowlanych w tym wycieków w prysznicu i dachach, wilgoć i problemy hydroizolacyjne, jak rówież nieprawidłowości w wykonaniu izolacji.

 

Używanie kamer termowizyjnych, nie tylko pozwala Termite Solution na zaoszczędzenie czasu pracy, ale również na oszczędność pieniędzy klienta, przez odkrycie termitów, zanim wyrządzą szkody.
Inwestycja Termite Solution w kamery termowizyjne FLIR szybko została zrekompensowana przez generowanie wzrostu w biznesie, oraz większej liczby budynków, które technicy mogli zdiagnozować w ciągu dnia.
"Firma FLIR zawsze uważana była za lidera w dziedzinie termografii, dlatego spośród wielu urządzeń wybrałem właśnie tę markę. Szkolenia FLIR zawsze były doskonałe, a pracownicy obsługi klienta bardzo pomocni" mówi Mal Brewer.

 

 

  Zapewnienie jakości ma fundamentalne znaczenie w systemach solarnych. Bezawaryjna praca paneli jest warunkiem efektywnego wytwarzania energii, długiej żywotności oraz szybkiego zwrotu inwestycji. Aby zapewnić bezawaryjną pracę, wymagana jest prosta i niezawodna metoda oceny wydajności panelu słonecznego zarówno w procesie produkcyjnym, jak i po montażu.  

 

 

 

FLIR iBros panele słoneczne

Zastosowanie kamer termowizyjnych w badaniach paneli słonecznych ma wiele zalet. Nieprawidłowości mogą być wyraźnie widoczne na ostrym obrazie termicznym oraz - w przeciwieństwie do większości innych metod - kamery termiczne mogą być używane do skanowania zainstalowanych paneli słonecznych, w czasie normalnej pracy. Wreszcie, kamery termowizyjne pozwalają skanować duże powierzchnie w krótkim czasie.FLIR iBros panele słoneczne cieplejsze miejsca

W dziedzinie badań i rozwoju kamery termowizyjne są narzędziem do oceny ogniw słonecznych i paneli. Dla tych skomplikowanych pomiarów, kamery o wysokiej wydajności, zwykle z chłodzonymi detektorami stosuje się w kontrolowanych warunkach laboratoryjnych.

Jednakże stosowanie kamer termowizyjnych do paneli słonecznych nie jest ograniczone tylko w dziedzinie badań. Kamery termowizyjne są obecnie coraz częściej używane do kontroli jakości paneli słonecznych przed instalacją oraz do badań kontrolnych i konserwacyjnych po zamontowaniu panelu. Kamery te są przenośne, lekkie i pozwalają na bardzo elastyczne wykorzystanie w terenie.

Za pomocą kamery termowizyjnej potencjalne obszary problemowe mogą być wykryte i naprawione przed wystąpieniem rzeczywistych problemów i awarii. Ale nie każda kamera termowizyjna jest przeznaczona do kontroli ogniw słonecznych. Są pewne zasady i wytyczne, które muszą być przestrzegane w celu przeprowadzenia skutecznych kontroli i wyciągnięcia właściwych wniosków. Przykłady w tym artykule są oparte na modułach fotowoltaicznych z krystalicznych ogniw słonecznych; jednak zasady i wytyczne mają również zastosowanie do kontroli termograficznych modułów cienkowarstwowych.

Procedury kontroli paneli słonecznych z kamer termowizyjnych
Podczas procesu rozwoju i produkcji komórki słoneczne są uruchamiane elektrycznie lub z wykorzystaniem lampy błyskowej. Gwarantuje to, że istnieje wystarczający kontrast termiczny do dokładnych pomiarów termowizyjnych. Metoda ta nie może być stosowana przy badaniu paneli słonecznych w tej dziedzinie, jednak operator musi upewnić się, że nie ma wystarczającej ilości energii dostarczonej przez Słońce.

Aby osiągnać wystarczający kontrast termiczny podczas sprawdzania ogniw słonecznych, potrzebne jest natężenie promieniowania słonecznego 500 W / m2 lub więcej. Dla maksymalnego efektu wskazane jest natężenie promieniowania słonecznego 700W / m2. Natężenie promieniowania słonecznego opisuje incydent chwilowej mocy na powierzchni w jednostkach kW / m2, która może być mierzona poprzez piranometr (globalne promieniowanie słoneczne)lub pyrheliometr (bezpośrednie promieniowanie słoneczne). To w dużym stopniu zależy od położenia i lokalnych warunków pogodowych. Niskie temperatury na zewnątrz mogą również zwiększyć kontrast termiczny.

Jaki typ aparatu jest potrzebny?
Przenośne kamery termowizyjne do predykcyjnych przeglądów serwisowych zazwyczaj mają niechłodzony detektor mikrobolometryczny w zakresie 8-14 mikrometrów. Jednak szkło nie jest przezroczyste w tym obszarze. Gdy ogniwa słoneczne są kontrolowane od przodu, kamera termowizyjna widzi dystrybucję ciepła na powierzchni szkła, ale tylko pośrednio dystrybucję ciepła w komórkach bazowych. Dlatego różnice temperatur, które mogą być mierzone i obserwowane na powierzchni panelu słonecznego są małe. Aby te różnice były widoczne, kamera termowizyjna wykorzystywana do tych kontroli potrzebuje czułości termicznej ≤0.08K. Do wyraźnej wizualizacji małych różnic temperatury w obrazie termicznym, aparat powinien mieć możliwość ręcznej regulacji poziomu i rozpiętości.

Moduły fotowoltaiczne są zwykle montowane na bardzo refleksyjnej konstrukcji aluminiowej, która przedstawia się jako zimny obszar na obrazie termicznym, ponieważ odbija promieniowanie cieplne emitowane przez niebo. W praktyce oznacza to, że kamera termowizyjna rejestruje temperaturę ramową znacznie poniżej 0 ° C. Ponieważ wyrównanie histogramu obrazowania kamery termicznej automatycznie dostosowuje się do maksymalnych i minimalnych temperatur, wiele małych anomalii termicznych nie będzie od razu widoczne. Aby osiągnąć wysoki kontrast obrazu termicznego będzie potrzebna ciągła ręczna korekcja poziomu i zakresu.

FLIR iBros panele słoneczne DDE

 Tzw. DDE (Digital Detail Enhancement) zapewnia funcjonalne rozwiązanie.DDE automatycznie optymalizuje kontrast obrazu w scenach z wysokim zakresem dynamiki, a obraz termiczny nie musi być regulowany ręcznie. Kamera termowizyjna z funkcją DDE idealnie nadaje się do szybkich i dokładnych kontroli paneli słonecznych.

Zdjęcie termowizyjne bez DDE (od lewej) i z DDE (od prawej)

Przydatne funkcje

Kolejną przydatną funkcją dla kamery termowizyjnej jest tagowanie zdjęć termalnych z danych GPS. Pozwala to na łatwe zlokalizowanie wadliwych modułów w dużych obszarach, np. w gospodarstwach słonecznych, a także odnoszenie obrazów termicznych do urządzeń, np. w raportach.

Kamera termowizyjna powinna mieć wbudowany aparat cyfrowy, który wiąże się z obrazem cyfrowym (cyfrowe zdjęcia) umożliwiając zapisywanie z powiązanego obrazu termicznego. Jest to tzw. tryb fuzji pozwalający na nakładanie obrazów cieplnych i wizualnych, które mogą być również użyteczne. Przy tworzeniu raportów mogą okazać się przydatne komentarze głosowe oraz tekstowe, które mogą być zapisywane w kamerze razem z obrazem termicznym. 

 

Ustawienie aparatu: odbicia i emisyjność
Mimo, że szkło ma emisyjność 0.85-0.90 w zakresie 8-14 mikrometrów, pomiary termiczne na powierzchni szkła nie są łatwe do zrobienia. Odbicia szklane są lustrzane, co oznacza, że otaczające przedmioty o różnych temperaturach mogą być wyraźnie widoczne w obrazie termicznym. W najgorszym przypadku powoduje to błędną interpretację (fałszywe "gorące punkty") oraz błędy pomiarowe.

Aby uniknąć odbicia kamery termowizyjnej i operatora w szkle, instrument nie powinien być ustawiony prostopadle do sprawdzanego modułu. Jednak emisyjność jest najwyższa, gdy kamera ustawiona jest prostopadłe, a zmniejsza się wraz ze wzrostem kąta. Dobrym rozwiązaniem jest kąt patrzenia 5-60 °.FLIR iBros Kąt padania

Kąt zależny od emisyjności szkła

Obserwacje długodystansowe
Nie zawsze łatwe jest osiągnięcie odpowiedniego kąta widzenia podczas pomiaru set-up. Korzystanie ze statywu może stanowić rozwiązanie tego problemu w większości przypadków. W trudniejszych warunkach może być konieczne skorzystanie z mobilnych platform roboczych, a nawet latanie helikopterem nad panelami słonecznymi. W tych przypadkach, większa odległość od celu może być korzystna, ponieważ większa powierzchnia może być postrzegana w jednym przejściu.

FLIR iBros Solar panel w tęczy W celu zapewnienia wysokiej jakości obrazu termicznego do badań na dłuższych dystansach, powinna być stosowana kamera termowizyjna o rozdzielczości obrazu co najmniej 320 × 240 pikseli, a najlepiej 640 × 480 piksel.

Kamera powinna mieć również wymienny obiektyw, dzięki czemu operator może przejść do teleobiektywu podczas obserwacji na dużą odległość, taką jak z helikoptera. Wskazane jest jednak, aby korzystać tylko z teleobiektywów kamer termowizyjnych, które mają wysoką rozdzielczość obrazu. Niska rozdzielczość kamery termowizyjnej w pomiarach z dużej odległości przy użyciu teleobiektywu nie będzie w stanie odebrać małych szczegółów, które wskazują błędy cieplne paneli słonecznych. Aby nie wyciągnąć fałszywych wniosków należy trzymać kamerę termowizyjną pod odpowiednim kątem podczas inspekcji paneli słonecznych.

Patrząc na to z innej perspektywy

W większości przypadków, zainstalowane moduły fotowoltaiczne mogą być kontrolowane za pomocą kamery termowizyjnej z tylnej części modułu. Metoda ta minimalizuje przeszkadzające odbicia od słońca i chmur. Ponadto, temperatury uzyskane z tyłu mogą być większe, a pomiar jest wykonywany bezpośrednio, a nie przez powierzchnię szkła.

Warunki otoczenia i pomiarów
Podejmując inspekcje termograficzne, niebo powinno być jasne, ponieważ chmury zmniejszają natężenie promieniowania słonecznego, a także powodują zakłócenia przez odbicia. Informacyjne obrazy mogą być jednak uzyskane nawet przy zachmurzonym niebie, pod warunkiem, że używana kamera termowizyjna jest wystarczająco czuła. Pożądane są spokojne warunki, ponieważ każdy strumień powietrza na powierzchni modułu słonecznego powoduje konwekcyjne chłodzenie, a tym samym zmniejsza się gradient temperatury. Niższe temperatury powietrza dają wyższy potencjał kontrastu cieplnego. Dobrym rozwiązaniem jest przeprowadzanie inspekcji termograficznych w godzinach porannych.

Innym sposobem, zwiększenia kontrastu termicznego jest odłączenie komórki od obciążenia, w celu uniemożliwienia przepływu prądu. Następnie, obciążenie jest podłączone, a komórki obserwuje się w fazie nagrzewania.

W normalnych okolicznościach system powinien być sprawdzany w naturalnych warunkach pracy, to znaczy pod obciążeniem. W zależności od typu komórki i rodzaju uszkodzenia lub awarii, pomiary mocy bez obciążenia lub warunków zwarciowych mogą dostarczyć dodatkowych informacji.

FLIR iBros panele słoneczne termowizja
Pirwszy obraz termograficzny pokazuje duże obszary o podwyższonej temperaturze. Bez większej liczby informacji nie wiemy czy są to nieprawidłowości termiczne czy cień lub refleksje. Kolejny termogram ukazuje tył modułu solarnego, obraz wykonany kamerą FLIR P660. Wizualny obraz tej sytuacji jest pokazany na kolejnym zdjęciu.

Błędy pomiaru
Błędy pomiaru wynikają przede wszystkim ze złego ustawienia kamery oraz panujących warunków otoczenia i pomiarowych.

Typowe błędy pomiarowe są spowodowane:

• zbyt płytkim kątem widzenia

• zmianą natężenia promieniowania słonecznego w czasie (z powodu zmian na niebie)

• odbiciami (np, słońce, chmury, okoliczne budynki o większej wysokości, pomiary set-up)

• częściowym zacienieniem (np. z powodu otaczających budynków lub innych budowli).

Co można zobaczyć w obrazie termicznym
Jeśli części panelu słonecznego są cieplejsze niż w innych miejscach, ciepłe obszary pojawią się wyraźnie w obrazie termicznym. W zależności od kształtu i położenia tych obszarów gorące plamy mogą wskazywać na wiele różnych wad. Jeżeli cały moduł jest cieplejszy niż zwykle może to wskazywać na występujące problemy.

Zacienienia i pęknięcia w komórkach pojawiają się jako gorące plamy lub wielokątne plamy w obrazie termicznym. Wzrost temperatury z komórki lub części komórki wskazuje na uszkodzoną komórkę lub zacienienia. Obrazy termiczne uzyskane pod obciążeniem, bez obciążenia oraz w warunkach zwarcia powinny być porównywane. Porównanie obrazów termicznych przednich i tylnych powierzchni modułu może dać cenne informacje. Oczywiście, dla prawidłowej identyfikacji awarii, moduły wykazujące anomalie muszą być testowane elektrycznie i poddane oględzinom.

Wnioski
Kontrola termowizyjna systemów fotowoltaicznych pozwala szybko lokalizować ewentualne uszkodzenia na poziomie komórek i modułów, jak również wykrycie ewentualnych problemów wzajemnych połączeń elektrycznych. Kontrole są przeprowadzane w normalnych warunkach pracy i nie wymagają zamykania systemu.

Dla prawidłowych i informacyjnych obrazów termicznych, obowiązują określone zasady i procedury pomiarowe:

• powinna być stosowana kamera termowizyjna z odpowiednimi akcesoriami;

• wymagane jest natężenie promieniowania słonecznego (co najmniej 500 W / m2 ; preferowane powyżej 700 W / m2);

• kąt widzenia musi być w bezpiecznym przedziale ( 5 ° - 60 °);

• należy zapobiegać zacienieniom i odbiciom

Kamery termowizyjne są wykorzystywane przede wszystkim do zlokalizowania usterki. Klasyfikacja i ocena wykrytych nieprawidłowości wymaga dogłębnego zrozumienia techniki solarnej, znajomości systemu kontroli i dodatkowych pomiarów elektrycznych. Właściwa dokumentacja jest oczywiście koniecznością i powinna zawierać wszystkie warunki kontroli, dodatkowe pomiary i inne istotne informacje.

Kontrole z kamery termowizyjnej – począwszy od kontroli jakości w fazie instalacji, kolejne regularne kontrole - ułatwiają proste monitorowanie stanu systemu. Pomaga to w utrzymaniu funkcjonalności paneli słonecznych i przedłuża ich żywotność. Za pomocą kamer termowizyjnych do kontroli kolektorów słonecznych można zdecydowanie przyspieszyć zwrot z wykonanej inwestycji.

Typ błędu

Przykład

Pojawia się w obrazie termicznym jako

Wada produkcyjna

Zanieczyszczenia i pęcherze gazowe

"gorące punkty" lub "zimne punkty"

Pęknięcia w komórkach

Ogrzewanie komórek,

forma głównie wydłużona

Uszkodzenia

Pęknięcia

Ogrzewanie komórek, forma głównie wydłużona

Pęknięcia w komórkach

Część komórki wydaje się gorętsza

Tymczasowe zacienienie

skażenie

Gorące miejsca

Ptasie odchody

wilgotność

Uszkodzona dioda bypass

(powoduje zwarcia i

zmniejsza ochronę obwodu)

N.a.

"wzorzec patchwork"

Wadliwe połączenia

Moduł lub ciąg modułów nie podłączony

Moduł lub ciąg modułów jest stale cieplejsze

Tabela 1: Lista typowych błędów modułu (Źródło: ZAE Bayern eV "Überprüfung der qualität von Photovoltaik- Modulen Infrarot-Aufnahmen mittels" ["Badania jakości w modułów fotowoltaicznych przy użyciu obrazowania w podczerwieni"], 2007)

FLIR CM83 to przemysłowy miernik cęgowy posiadający funkcje służące do analizy i filtracji. Jest on przeznaczony dla napędów sterowanych.

  • Tryb VFD zapewnia najwyższą dokładność pomiarów, które są prowadzone na urządzeniach sterowanych VFD.

  • Zaawansowana wydajność mocy i elementów harmonicznych do analizy pomiarów na poziomie systemowym.

  • Wydajna, duża lampa umożliwia łatwość pomiaru, ale również może służyć jako podstawowe źródło światła przy pracy.

  • Opcja FLIR Tools Mobile łączy FLIR CM83 poprzez Bluetooth z kompatybilnym tabletem, bądź smartfonem *

  • Technologia METERLiNK® łączy bezprzewodowo pomiary elektryczne z obrazami w podczerwieni z kamer termowizyjnych obsługujących technologię FLIR.

 

 

Zalety

  • pomiar napięcia i prądu,

  • jasne białe podświetlenie LED,

  • analogowy bargraf,

  • współczynnik mocy,

  • zintegrowany, bezstykowy detektor napięcia ,

  • min, max, średnia,

  • automatyczne wyłączanie zasilania,

  • przechowywanie danych,

  • DCA zero,

  • stan baterii.

 

Zawartość zestawu

Zestaw obejmuje: FLIR CM83

  • 6 baterii AAA,

  • instrukcja / CD,

  • silikonowe przewody pomiarowe CAT IV,

  • gwarancja.

 

Specyfikacja

Podsumowanie techniczne

Zakres

dokładność

Prąd AC / DC

600A

± 2%

Napięcie AC / DC

1000V

± 1% / 0,7%

Pomiar wyższych harmonicznych

1st-25th

± 5%

Całkowite zniekształcenia harmoniczne

0,0 do 99,9%

± 3%

prąd rozruchowy

600ACA (czas integracji 100ms)

± 3%

moc czynna

10kW do 600 kW (10V, 5A min)

± 3%

test diody

0.4 do 0.8V

± 0.1V

pojemność

3.999mF Max

± 1,9%

odporność

99.99kΩ Max

± 1%

próg ciągłości

30Ω

± 1%

częstotliwość

20.00Hz do 9.999kHz

± 0,5%

Informacje ogólne

 

otwarcie szczęk

1.45in (37mm, 1000MCM)

Kategoria ochrony

CAT IV-600 V CAT III-1000V

Maksymalny zasięg Bluetooth

32ft (10m)

Nowa seria FLIR T500 posiada funkcje potrzebne profesjonalistom do dokładnego diagnozowania gorących punktów i potencjalnych usterek. Stworzone z myślą o zaawansowanych pomiarach w sektorze energetycznym (produkcja i dystrybucja energii) i przemyśle, koncentrując się na wysokiej rozdzielczości urządzenia, prędkości pracy i zaawansowanej ergonomii. Dzięki obrotowej platformie z obiektywem o kącie obrotu 180º, jasnemu 4-calowemu wyświetlaczowi LCD i wygodnej obudowie kamery FLIR T530 / T540 stanowią przydatne narzędzie dla inspektorów, ułatwiając pomiary termowizyjne w ciężkich warunkach przemysłowych, zwłaszcza gdy badane urządzenia są zasłonięte przeszkodami lub trudno dostępne. Zaawansowane narzędzia pomiarowe kamery, autofocus wspomagany laserem oraz najlepsza jakość obrazu FLIR zapewniają szybką diagnozę i lokalizację problemów. 

 

FLIR T5xx grafika1

 

 Szybko podejmuj kluczowe decyzje

Autofocus wspomagany laserowo gwarantuje uzyskanie wyjątkowej ostrości niezbędnej do wykonania najdokładniejszych odczytów temperatury, podczas gdy FLIR Vision ProcessingTM - zasilany przez MSX®, UltraMax® oraz własne algorytmy filtrowania - zapewnia ostre obrazy termowizyjne.

 

  

FLIR T5xx grafika2

 

Elastyczna i wydajna

Obiektyw kamer termowizyjnych serii T500 obraca się o 180º, dzięki czemu są one uniwersalnymi i ergonomicznymi kamerami serii T. Wygodne wykonywanie pomiarów, dzięki możliwości skierowania obiektywu pod dowolnym kątem.

 

   

FLIR T5xx grafika3

 

Maksymalizuj bezpieczeństwo 

Badaj potencjalne usterki z bezpiecznej odległości i większych obszarów, dzieki możliwości doboru inteligentnej, wymiennej optyki AutoCalTM, wyjątkowej dokładności pomiaru temperatury i rozdzielczości do 464 x 348 (161 472) pikseli.

 

  

 

 pdf   Karta techniczna kamer termowizyjnych FLIR serii T500

 pdf   Pobierz broszurę kamery termowizyjnej FLIR serii T500

 

 

Właściwości

T530 540.grafika1

 

Maksymalizacja efektywności, bezpieczeństwa i wydajności

Możliwość bezpiecznej i wygodnej kontroli instalacji i zapobiegania uszkodzeniom komponentów z dowolnego punktu obserwacyjnego

 

  • Ograniczenie wysiłku związanego z całodziennymi kontrolami dzięki układowi optycznemu uchylnemu w zakresie 180°, który pozwala kierować kamerę na obiekty pod dowolnym kątem nad głową lub nisko przy ziemi
  • Skanowanie dużych obszarów z bezpiecznej odległości dzięki rozdzielczości detektora maks. 464 x 348 zapewniającej 161 472 bezkontaktowe punkty pomiaru temperatury
  • Możliwość wspólnego użytkowania obiektywów (od szerokokątnych do teleobiektywów) ze wszystkimi posiadanymi kamerami dzięki technologii AutoCal
  • Super wyraźne obrazy termowizyjne i precyzyjne odczyty temperatury dzięki wspomaganemu laserowo systemowi automatycznego ustawiania ostrości obrazu

 

T530 540.grafika3

 

Szybkie podejmowanie decyzji o mewralgicznym znaczeniu

Zaawansowana technologia tworzenia obrazów i doskonała czułość pozwalają na dokonanie właściwego i szybkiego wyboru

 

  • Wiodąca w branży czytelność obrazu dziękitechnologii obróbki obrazu FLIR Vision Processing™, potęga funkcji MSX®, przetwarzanie UltraMax® i unikatowy algorytm filtrowania adaptacyjnego
  • Określanie odległości do wymagających naprawy komponentów za jednym naciśnięciem przycisku, aktywującym prezentowany na ekranie odczyt dalmierza laserowego
  • Łatwe dostrzeganie problemów i podejmowanie decyzji dzięki odpornemu na zarysowania, 4-calowemu wyświetlaczowi LCD, który jest o 33% jaśniejszy i ma czterokrotnie większą rozdzielczość w porównaniu do innych kamer z tego segmentu

T530 540.grafika2

 

Łatwiejsza praca

Optymalne wykorzystanie dania pracy dzięki funkcjom szybkiego raportowania, które pomagają w organizacji usterek zdiagnozowanych podczas pracy w terenie

 

  • Szybki dostęp do menu, folderów i ustawień dzięki intuicyjnej nawigacji i obsłudze, m.in. przy użyciu niezwykle czułego ekranu i dwóch programowalnych przycisków
  • Prezentowanie istotnych wyników obserwacji w czasie rzeczywistym za pomocą transmisji przez Wi-Fi do aplikacji FLIR Tools
  • Optymalizacja pracy dzięki usprawnionym funkcjom raportowania, takim jak wbudowane notatki głosowe, komentarze tekstowe z automatycznym wypełnianiem i szkicowanie na obrazie
  • Przygotowywanie precyzyjnej dokumentacji dzięki osadzonym koordynatom GPS oraz danym pomiarowym z mierników cęgowych i uniwesalnych FLIR z funkcją METERLiNK®

 

Zalety

FLIR T500 series

  • Uchylny układ optyczny w zakresie 180° i czytelny ekran pojemnościowy 4''
  • Rzeczywista rozdzielczość detektora maks. 464 x 348 pikseli (161 472 punkty pomiaru)
  • Szybkie i precyzyjne, wspomagane laserowo, automatyczne ustawianie ostrości
  • Dalmierz laserowy i pomiar pola powierzchni obszaru prezentowany na ekranie
  • Możliwość dostosowania folderow roboczych
  • Inteligentne, wymienne obiektywy w technologii AutoCal
  • Wiodąca w branży gwarancja FLIR 2-10

           T500

 

Specyfikacja

T530

T540

Rozdzielczość obrazu termowizyjnego

320 x 240

(76 800 pikseli)

464 x 348

(161 472 pikseli)

Rozdzielczość UltraMax®

307 200 efektywnych
pikseli

645 888 efektywnych
pikseli

Zakres mierzonych temperatur

Od -20°C do 120°C
Od 0°C do 650°C
Opcjonalna kalibracja:
Od 300°C do 1200°C

Od -20°C do 120°C
Od 0°C do 650°C
Od 300°C do 1500°C

Powiększenie cyfrowe

1-4x ciągłe

1-6x ciągłe

Funkcje wspólne

Typ detektora/ wielkość piksela

Niechłodzony mikrobolometr, 17 µm

Czułość termiczna/ NETD

<30 mK przy 30°C (obiektyw 42°)

Zakres widmowy

7,5 - 14,0 µm

Częstotliwość obrazu

30 Hz

Identyfikacja obiektywu

Automatyczna

Liczna F

f/1.1 (obiektyw 42°), f/1.3 (obiektyw 24°), f/1.5
(obiektyw 14°)

Ustawianie ostrości obrazu

Ciągłe z dalmierzem laserowym (LDM), z dalmierzem laserowym za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręcznie

Minimalna odległość ustawiania ostrości

obiektyw 42° – 0,15 m
obiektyw 24° – 0,15 m; opcjonalny tryb makro
obiektyw 14° – 1,0 m

Tryb makro

opcjonalny obiektyw
24° / efektywny rozmiar
punktu 103 µm

opcjonalny obiektyw
24° / efektywny rozmiar
punktu 71 µm

Programowalne przyciski

2

Prezentacja i tryby obrazu

Wyświetlacz

Ekran dotykowy LCD 4”, 640 x 480 pikseli z funkcją automatycznego obrotu

Aparat cyfrowy

Aparat cyfrowy 5 MP, z wbudowaną lampą LED do obrazów/sekwencji wideo

Palety kolorów

Żelaza, Skala szarości, Tęczy, Arktyczna, Lawa, Tęczy
wysoki kontrast

Tryby obrazowania

Termowizyjny, wizualny, MSX®, obraz w obrazie

Obraz w Obrazie (PiP)

Dowolne położenie, zmienna przekątna

UltraMax®

Czterokrotnie zwiększa liczbę pikseli. Tę opcję włącza się w menu, do przetwarzania służy aplikacja FLIR Tools

Analiza pomiarów

Dokładność

±2°C lub ±2% odczytu

Punkt pomiarowy i obszar

3 w trybie na żywo

Dostępne ustawienia pomiarów

Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2

Wskaźnik laserowy

Tak

Dalmierz laserowy

Tak; osobny przycisk

Adnotacje

Głos

60-sekundowe nagranie dodane do zdjęć lub wideo za pomocą wbudowanego mikrofonu (wbudowany jest również głośnik) lub przez Bluetooth

Tekst

Lista wcześniej zdefiniowanych komunikatów lub wpisywany z klawiatury ekranowej

Szkic na obrazie

Z ekranu dotykowego, tylko na obrazie termowizyjnym

Pomiar odległości, powierzchni obszaru

Tak, oblicza powierzchnię obszaru w ramce pomiarowej w m2 lub ft2

GPS

Automatyczne znakowanie obrazu

METERLiNK®

Tak

Zapis obrazów

Nośnik pamięci

Wymienna karta SD

Format pliku obrazu

Standardowy JPEG z danymi pomiarowymi

Zdjęcia poklatkowe (w podczerwieni)

Od 10 sekund do 24 godzin

Nagrywanie i transmitowanie sygnału wideo

Zapis pomiarowej sekwencji termowizyjnej

Rejestracja danych pomiarowych w czasie rzeczywistym (.csq)

Niepomiarowa sekwencja termowizyjna lub foto

H.264 na kartę pamięci

Strumieniowanie pomiarowego wideo termowizyjnego

Tak, przez UVC lub Wi-Fi

Strumieniowanie niepomiarowego sygnału wideo w podczerwieni

H.264 lub MPEG-4 przez Wi-Fi
MJPEG przez UVC lub Wi-Fi

Interfejsy komunikacyjne

USB 2.0, Bluetooth, Wi-Fi

Wyjście wideo

DisplayPort przez USB typu C

Dodatkowe dane

Typ akumulatora

Akumulator litowo-jonowy, ładowany w kamerze lub w osobnej ładowarce

Czas pracy akumulatora

Ok. 4 h w temperaturze otoczenia 25°C i przy typowych warunkach eksploatacji

Zakres temperatur pracy

od -15°C do 50°C

Zakres temperatur przechowywania

od -40°C do 70°C

Wstrząsy/ Drgania/ Obudowa;

Bezpieczeństwo

25 g / IEC 60068-2-27, 2 g / IEC 60068-2-6 / IP 54;
EN/UL/CSA/PSE 60950-1

Masa

Wymiary bez obiektywu

1,3 kg

140 x 201 x 84 mm

Zawartość opakowania

Opakowanie

Kamera termowizyjna z obiektywem, 2 akumulatory, ładowarka akumulatorów, walizka transportowa, smycze, przednia osłona obiektywu, zasilacze, dokumentacja w wersji papierowej, karta SD (8 GB), kable (USB 2.0 A do USB typu C, USB typu C do HDMI, USB typu C do USB typu C)

Dane techniczne mogą ulec zmianie bez uprzedniego powiadomienia.

W zestawie

Zestaw kamery termowizyjnej FLIR T500 zawiera:

  • Kamera termowizyjna z obiektywem (zgodnie z wybraną konfiguracją)
  • 2 baterie FLIR T500 zestaw
  • Ładowarka
  • Pasek na rękę
  • Twarda walizka transportowa
  • Smycz
  • Przednia pokrywa obiektywu
  • Tylna pokrywa obiektywu
  • Zasilacz
  • Dokumentacja w wersji drukowanej
  • Karta SD (8 GB)
  • Kable (USB 2.0 A do USB Typ-C, USB Typ-C na HDMI, USB Typ-C na USB Typ-C)

  

 

Filmy

 

Film przedstawiający podstawowe funkcje profesjonalnej kamery termowizyjnej serii FLIR T500 (T530 T540 T840)

 

Ustawienie profili użytkowniak w kamerach serii FLIR T500

 

T530

T540

Rozdzielczość obrazu termowizyjnego

320 x 240

(76 800 pikseli)

464 x 348

(161 472 pikseli)

Rozdzielczość UltraMax®

307 200 efektywnych
pikseli

645 888 efektywnych
pikseli

Zakres mierzonych temperatur

Od -20°C do 120°C
Od 0°C do 650°C
Opcjonalna kalibracja:
Od 300°C do 1200°C

Od -20°C do 120°C
Od 0°C do 650°C
Od 300°C do 1500°C

Powiększenie cyfrowe

1-4x ciągłe

1-6x ciągłe

Funkcje wspólne

Typ detektora/ wielkość piksela

Niechłodzony mikrobolometr, 17 µm

Czułość termiczna/ NETD

<30 mK przy 30°C (obiektyw 42°)

Zakres widmowy

7,5 - 14,0 µm

Częstotliwość obrazu

30 Hz

Identyfikacja obiektywu

Automatyczna

Liczna F

f/1.1 (obiektyw 42°), f/1.3 (obiektyw 24°), f/1.5
(obiektyw 14°)

Ustawianie ostrości obrazu

Ciągłe z dalmierzem laserowym (LDM), z dalmierzem laserowym za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręcznie

Minimalna odległość ustawiania ostrości

obiektyw 42° – 0,15 m
obiektyw 24° – 0,15 m; opcjonalny tryb makro
obiektyw 14° – 1,0 m

Tryb makro

opcjonalny obiektyw
24° / efektywny rozmiar
punktu 103 µm

opcjonalny obiektyw
24° / efektywny rozmiar
punktu 71 µm

Programowalne przyciski

2

Prezentacja i tryby obrazu

Wyświetlacz

Ekran dotykowy LCD 4”, 640 x 480 pikseli z funkcją automatycznego obrotu

Aparat cyfrowy

Aparat cyfrowy 5 MP, z wbudowaną lampą LED do obrazów/sekwencji wideo

Palety kolorów

Żelaza, Skala szarości, Tęczy, Arktyczna, Lawa, Tęczy
wysoki kontrast

Tryby obrazowania

Termowizyjny, wizualny, MSX®, obraz w obrazie

Obraz w Obrazie (PiP)

Dowolne położenie, zmienna przekątna

UltraMax®

Czterokrotnie zwiększa liczbę pikseli. Tę opcję włącza się w menu, do przetwarzania służy aplikacja FLIR Tools

Analiza pomiarów

Dokładność

±2°C lub ±2% odczytu

Punkt pomiarowy i obszar

3 w trybie na żywo

Dostępne ustawienia pomiarów

Bez pomiaru, punkt środkowy, punkt gorący, punkt zimny, wartość użytkownika 1, wartość użytkownika 2

Wskaźnik laserowy

Tak

Dalmierz laserowy

Tak; osobny przycisk

Adnotacje

Głos

60-sekundowe nagranie dodane do zdjęć lub wideo za pomocą wbudowanego mikrofonu (wbudowany jest również głośnik) lub przez Bluetooth

Tekst

Lista wcześniej zdefiniowanych komunikatów lub wpisywany z klawiatury ekranowej

Szkic na obrazie

Z ekranu dotykowego, tylko na obrazie termowizyjnym

Pomiar odległości, powierzchni obszaru

Tak, oblicza powierzchnię obszaru w ramce pomiarowej w m2 lub ft2

GPS

Automatyczne znakowanie obrazu

METERLiNK®

Tak

Zapis obrazów

Nośnik pamięci

Wymienna karta SD

Format pliku obrazu

Standardowy JPEG z danymi pomiarowymi

Zdjęcia poklatkowe (w podczerwieni)

Od 10 sekund do 24 godzin

Nagrywanie i transmitowanie sygnału wideo

Zapis pomiarowej sekwencji termowizyjnej

Rejestracja danych pomiarowych w czasie rzeczywistym (.csq)

Niepomiarowa sekwencja termowizyjna lub foto

H.264 na kartę pamięci

Strumieniowanie pomiarowego wideo termowizyjnego

Tak, przez UVC lub Wi-Fi

Strumieniowanie niepomiarowego sygnału wideo w podczerwieni

H.264 lub MPEG-4 przez Wi-Fi
MJPEG przez UVC lub Wi-Fi

Interfejsy komunikacyjne

USB 2.0, Bluetooth, Wi-Fi

Wyjście wideo

DisplayPort przez USB typu C

Dodatkowe dane

Typ akumulatora

Akumulator litowo-jonowy, ładowany w kamerze lub w osobnej ładowarce

Czas pracy akumulatora

Ok. 4 h w temperaturze otoczenia 25°C i przy typowych warunkach eksploatacji

Zakres temperatur pracy

od -15°C do 50°C

Zakres temperatur przechowywania

od -40°C do 70°C

Wstrząsy/ Drgania/ Obudowa;

Bezpieczeństwo

25 g / IEC 60068-2-27, 2 g / IEC 60068-2-6 / IP 54;
EN/UL/CSA/PSE 60950-1

Masa

Wymiary bez obiektywu

1,3 kg
140 x 201 x 84 mm

Zawartość opakowania

Opakowanie

Kamera termowizyjna z obiektywem, 2 akumulatory, ładowarka akumulatorów, walizka transportowa, smycze, przednia osłona obiektywu, zasilacze, dokumentacja w wersji papierowej, karta SD (8 GB), kable (USB 2.0 A do USB typu C, USB typu C do HDMI, USB typu C do USB typu C)

 

 

FLIR CM78 Miernik z termometrem na podczerwień

 

Przemysłowy miernik cęgowy do 1000A (pomiar RMS), nadaje się dla elektryków i specjalistów, którzy potrzebują bezpiecznego oraz niezawodnego narzędzia.

  • Wbudowany zintegrowany termometr daje możliwość szybkich bezstykowych pomiarów temperatury paneli elektrycznych, przewodów, a także silników.

  • Wydajna lampa bardzo pomaga w pomiarach, ale jej światło jest na tyle jasne, że może służyć jako podstawowe źródło światła do pracy.

  • Opcja FLIR Tools Mobile łączy FLIR CM78 poprzez Bluetooth z kompatybilnym tabletem, bądź smartfonem.*

  • Technologia METERLiNK® łączy bezprzewodowo pomiary elektryczne z obrazami w podczerwieni z kamer termowizyjnych obsługujących technologię FLIR.

FLIR CM78

 

Cechy:

  • napięcie i prąd, min, max, średnia,

  • automatyczne wyłączanie zasilania,

  • wskaźnik stanu baterii,

  • jasne, białe podświetlenie LED

Zestaw obejmuje:

  • 6 baterii AAA,

  • Instrukcja obsługi / CD,

  • silikonowe przewody CAT IV

  • gwarancja  

 

Podsumowanie techniczne

Maksymalny zakres

Dokładność

Prąd AC / DC

1000A

± 2,5%

Napięcie AC / DC

1000V

± 1,5%

odporność

40.00MΩ

± 1,5%

pojemność

4.000mF

± 3%

częstotliwość

4000Hz

± 1,5%

Temperatura (IR)

20 do 518 ° C, od -20 do 270 ° C

± 2%

Stosunek odległości IR do kierowania

Odległość: 8 cali Wielkość plamki 1 cal

 

Temperatura typu K (opcjonalnie sonda)

-4 Do 1400 ° C, -20 do 760 ° C

± 3%

Informacje ogólne

 

Maksymalny zasięg Bluetooth

32ft (10m)

otwarcie kleszczy

1.7 w (42mm, 1500MCM)

Kategoria ochrony

CAT IV-600 V CAT III-1000V

 

Właściwości

FLIR C2 - 4 800 pikseli
Rozdzielczość - 80 x 60
Pomiary: -10°C to +150°C

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety C2:

  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Obiektyw szerokokątny – specjalnie przystosowany obiektyw dzieki któremu C2 moze być wykorzystywana w budownictwie
  • 3" dodtykowy ekran – dotykowy ekran pozwala na łatwiejszą i szybszą obsługę kamery
  • Streaming wideo – zaawansowana opcja przesyłania obrazu wideo, do tej pory zarezerwowana dla droższych kamer termowizyjnych.
  • Kompaktowa budowa - lekka, funkcjonalan budowa. C2 można zawiesić na dostarczonej w zestawie smyczy lub schować w kieszeni
  • Rzeczywiste pomiary - kamera pozwala na zapis radiometrycznych obrazów w formacie JPG. Zrób zdjęcie by potem przeanalizować je na komputerze w domu!

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej C2:

Do pobrania: Specyfikacja techniczna kamery termowizyjnej FLIR C2

 

Rozdzielczość detektora 80 × 60 (4 800 pikseli)
Czułość ‹ 0.10°C
FOV 41° x 31°
Minimalna odległość ostrzenia IR: 0.15 m (0.49 ft.)
MSX®: 1.0 m (3.3 ft.)
Częstotliwość odświeżania 9 Hz
Zakres spektralny 7.5 - 14 µm
Wielkość wyświetlacza 3” (320 x 240 pikseli)
Auto-orientacja Tak
Ekran dotykowy Tak
Tryby obrazowania
Obraz podczerwony Tak
Obraz widziany Tak
MSX® Tak
Galeria Tak
Pomiary
Zakres pomiaru temperatury -10°C to +150°C (14 to 302°F)
Dokładność ±2°C lub 2%, (w zależności która wartość jest większa)
Analiza obrazu
Pomiar w punkcie pomiar lub brak
Korekcja emisyjności Tak; matowa/półmatowa/błyszcząca + nastawiana przez użytkownika
Korekcja pomiarów Emisyjność, Temperatura odbita
Ustawienia
Palety Żelazo, Tęcza, Tęcza HC, Szara
Pamięć Wbudowana pamięć, zapis co najmniej 500 zdjęć
Format zapisu JPEG, 14 bitowe dane pomiarowe
Streaming wideo
Obraz IR nieradiometryczny Tak
Obraz światła widzianego Tak
Kamera cyfrowa
Rozdzielczość 640 x 480 pikseli
Ustawienia ostrości Stałe
Dodatkowe informacje
Gniazdo USB USB Micro-B: Możliwość przesyłu dany z oraz do komputera, urządzeń mobilnych
Bateria 3.7 V Akumulator Li-Ion
Czas pracy na baterii 2 godziny
Ładowanie ładowanie w kamerze
Czas ładowania 1,5 godziny
Zasilanie zewnętrzne Zasilacz AC, 90-260 VAC wejście 5 V wyjście do kamery
Zarządzanie energią Automatycze wyłączanie
Temperatura pracy -10°C do +50°C (14 to 122°F)
Temperatura przechowywania -40°C do +70°C (-40 to 158°F)
Waga 0.13 kg (0.29 lb.)
Rozmiar (Dł. x Szer. x Wys.) 125 x 80 x 24 mm (4.9 x 3.1 x 0.94 in.)

 

Zastosowanie kamer C2:

  • Wykonywanie pomiarów testowych instalacji elektrycznych
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi

 

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

BrakOciepleniaNaScianie ibros FLIR BrakOciepleniaNaScianie ibros FLIR
NieszczelnoscPrzyGniazdku iBros NieszczelnoscPrzyGniazdku iBros
NieszczelnoscStataCiepla ibros FLIR NieszczelnoscStataCiepla ibros FLIR
PrzegrzeanyPrzelacznik ibros FLIR PrzegrzeanyPrzelacznik ibros FLIR
TablicaBezpiecznikow ibros FLIR TablicaBezpiecznikow ibros FLIR
ZimnePowietrzeWSuficiePodwieszanym ibros FLIR ZimnePowietrzeWSuficiePodwieszanym ibros FLIR

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej C2:

 

Kompaktowa kamera termowizyjna

Właściwości

FLIR C2 - 4 800 pikseli
Rozdzielczość - 80 x 60
Pomiary: -10°C to +150°C

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety C2:

  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Obiektyw szerokokątny – specjalnie przystosowany obiektyw dzieki któremu C2 moze być wykorzystywana w budownictwie
  • 3" dodtykowy ekran – dotykowy ekran pozwala na łatwiejszą i szybszą obsługę kamery
  • Streaming wideo – zaawansowana opcja przesyłania obrazu wideo, do tej pory zarezerwowana dla droższych kamer termowizyjnych.
  • Kompaktowa budowa - lekka, funkcjonalan budowa. C2 można zawiesić na dostarczonej w zestawie smyczy lub schować w kieszeni
  • Rzeczywiste pomiary - kamera pozwala na zapis radiometrycznych obrazów w formacie JPG. Zrób zdjęcie by potem przeanalizować je na komputerze w domu!

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej C2:

Do pobrania: Specyfikacja techniczna kamery termowizyjnej FLIR C2

 

Rozdzielczość detektora 80 × 60 (4 800 pikseli)
Czułość ‹ 0.10°C
FOV 41° x 31°
Minimalna odległość ostrzenia IR: 0.15 m (0.49 ft.)
MSX®: 1.0 m (3.3 ft.)
Częstotliwość odświeżania 9 Hz
Zakres spektralny 7.5 - 14 µm
Wielkość wyświetlacza 3” (320 x 240 pikseli)
Auto-orientacja Tak
Ekran dotykowy Tak
Tryby obrazowania
Obraz podczerwony Tak
Obraz widziany Tak
MSX® Tak
Galeria Tak
Pomiary
Zakres pomiaru temperatury -10°C to +150°C (14 to 302°F)
Dokładność ±2°C lub 2%, (w zależności która wartość jest większa)
Analiza obrazu
Pomiar w punkcie pomiar lub brak
Korekcja emisyjności Tak; matowa/półmatowa/błyszcząca + nastawiana przez użytkownika
Korekcja pomiarów Emisyjność, Temperatura odbita
Ustawienia
Palety Żelazo, Tęcza, Tęcza HC, Szara
Pamięć Wbudowana pamięć, zapis co najmniej 500 zdjęć
Format zapisu JPEG, 14 bitowe dane pomiarowe
Streaming wideo
Obraz IR nieradiometryczny Tak
Obraz światła widzianego Tak
Kamera cyfrowa
Rozdzielczość 640 x 480 pikseli
Ustawienia ostrości Stałe
Dodatkowe informacje
Gniazdo USB USB Micro-B: Możliwość przesyłu dany z oraz do komputera, urządzeń mobilnych
Bateria 3.7 V Akumulator Li-Ion
Czas pracy na baterii 2 godziny
Ładowanie ładowanie w kamerze
Czas ładowania 1,5 godziny
Zasilanie zewnętrzne Zasilacz AC, 90-260 VAC wejście 5 V wyjście do kamery
Zarządzanie energią Automatycze wyłączanie
Temperatura pracy -10°C do +50°C (14 to 122°F)
Temperatura przechowywania -40°C do +70°C (-40 to 158°F)
Waga 0.13 kg (0.29 lb.)
Rozmiar (Dł. x Szer. x Wys.) 125 x 80 x 24 mm (4.9 x 3.1 x 0.94 in.)

 

Zastosowanie kamer C2:

  • Wykonywanie pomiarów testowych instalacji elektrycznych
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi

 

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

BrakOciepleniaNaScianie ibros FLIR BrakOciepleniaNaScianie ibros FLIR
NieszczelnoscPrzyGniazdku iBros NieszczelnoscPrzyGniazdku iBros
NieszczelnoscStataCiepla ibros FLIR NieszczelnoscStataCiepla ibros FLIR
PrzegrzeanyPrzelacznik ibros FLIR PrzegrzeanyPrzelacznik ibros FLIR
TablicaBezpiecznikow ibros FLIR TablicaBezpiecznikow ibros FLIR
ZimnePowietrzeWSuficiePodwieszanym ibros FLIR ZimnePowietrzeWSuficiePodwieszanym ibros FLIR

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej C2:

 

 

Zewnętrzne systemy ociepleń stają się coraz bardziej popularne na europejskim rynku budowlanym. Wraz z powstaniem bardziej rygorystycznych wymagań certyfikacji energetycznej oraz przepisów w zakresie efektywności energetycznej budynków, konstruktorzy zwracają coraz większą uwagę na dokładne i efektywne stosowanie tych systemów. Niestety wiele metrów kwadratowych zewnętrznych systemów izolacji cieplnej w nowych lub istniejących budynkach zostały zainstalowane bez użycia najlepszych praktyk. W celu lepszego zrozumienia nieprawidłowości w systemach izolacji, jak również charakterystyki cieplnej produktów izolacyjnych, konsorcjum firm, w tym włoskie Stowarzyszenie Izolacji Cieplnej i Akustycznej (Association for Thermal and Acoustic Insulation - ANIT), przeprowadziło projekt badawczy z użyciem kamer termowizyjnych FLIR Systems.

Badania mające na celu uznanie nieprawidłowości w systemach izolacji oraz ich montażu zostały przeprowadzone przez ANIT i dwóch członków tej organizacji, a mianowicie firm: Caparol oraz FLIR Systems. Badanie było koordynowane przez Tep srl, przedsiębiorstwo usług inżynieryjnych, koncentrując się na badaniach nieniszczących efektywności energetycznej budynków.

Budowanie na próbę

W celu badania zjawisk cieplnych charakteryzujących instalację zewnętrznych systemów ociepleń, zbudowano egzemplarz testowy, pokryty z trzech stron płytą izolacji cieplnej (EPS z dodatkiem grafitu). W górnej części próbki ściany pokryte były w taki sposób, że posiadały typowe błędy wykonawcze. Dolna część była odpowiednio wykonana, z lub bez kołków EPS.

Aktywna analiza termograficzna

Próbka ściany monitorowana i analizowana była podczas cyklu ładowania i rozładowania przez energię słoneczną. Jej okresowe obrazy termiczne były rejestrowane i przechowywane. Dzięki aktywnej termografii, ładowanie odbywało się przez promieniowanie słoneczne i wywierało wpływ na powierzchnię próbki testowej. Podczas fazy rozładowania określana była struktura, w której gromadzona jest energia, a następnie monitorowano uwalnianie energii w cieniu. Do tego badania ANIT zdecydował się na użycie kamery termowizyjnej FLIR T640 , która okazała się być najlepiej dostosowana do tego typu badania.
FLIR IBROS próbka powierzchni termiczne systemy ociepleń

 

 

 

 

 

 

 

 

 

 

 

 Rys.1 Wzór układu testowego przed pokryciem.

Przenikanie ciepła w różnych warunkach

Aby prawidłowo zrozumieć to, co wydarzyło się w różnych przypadkach wskazanych na obrazie termograficznym, należy przeanalizować i poznać ewentualne anomalia, dotyczące wymiany ciepła w zmiennych warunkach na powierzchni izolacji.

Przy przepływie ciepła w zmiennych warunkach (tj. zmiennych temperaturach powierzchni) odporność termiczna przewodności właściwej i grubość każdego z tych materiałów nie są wystarczające do określenia właściwości termicznych różnych warstw. W rzeczywistości, należy również wziąć pod uwagę gęstość i ciepło właściwe materiałów. Parametry, które charakteryzują materiały w warunkach zmiennych połączonych z promieniowaniem struktury powierzchni zewnętrznej izolacji cieplnej są nazywane efektywnością termiczną.

Efektywność termiczna jest miarą zdolności cieplnej penetracji energii. Istotna jest: temperatura powierzchni zewnętrznej izolacji cieplnej, którą poddaje się silnemu wpływowi promieniowania słonecznego. Następnie bada się w jaki sposób materiał z poziomu powierzchni prowadzi ciepło do kolejnych warstw materiału w połączeniu ze zdolnością materiału do gromadzenia ciepła. Efektywność w tym kontekście wyraża się, jako łatwość materiału do ogrzewania, za pomocą promieniowania słonecznego wewnątrz: im niższa wartość, tym mniejsza jest ilość energii potrzebnej do ogrzewania materiału.

Próbka badawcza składa się z kilku materiałów o różnych wartościach efektywności cieplnej:

Klej do izolacji (EFR. = 906), EPS z dodatkiem grafitu (eff = 27) i PCV - z kołkami (eff = 530).

Wykres 1

Wykres 1 przedstawiający różnice temperatur, które występują na górnej części próbki podczas obciążeń termicznych, w których są obecne i celowe błędy instalacyjne.

Wykres 2
Wykres 2 temperatury prezentujący górną część próbki pokazuje, że nie ma materiału izolacyjnego o małej przewodności cieplnej, o ograniczonej pojemności cieplnej, kleju i kołków PVC, które mają wysoką przewodność cieplną oraz większą pojemność cieplną. Z uwagi na energię zmagazynowaną w wyniku promieniowania słonecznego izolacja chłodzi się szybciej, ponieważ ilość zmagazynowanej energii jest mniejsza to znaczy, że ma objętościowo mniejszą pojemność cieplną.

Analiza próbki

Analiza właściwości materiałów wykazuje różne zachowanie pod względem energii ładowania spowodowanego promieniowaniem i późniejsze opróżnienia energii wskutek cienia.

a) po naświetleniu promieniowaniem słonecznym stymulacja ogrzeje powierzchnię. PCW i klej, mają większą efektywność niż EPS, więc będą one początkowo chłodniejsze niż SWW i EPS ogrzeje się łatwiej. Kołki i odcinki klejone będą najzimniejszym punktem powierzchni.

b) Następnie badana próbka jest schładzana w cieniu. PVC i klej mają większą objętościową wydajność ciepła, dzięki temu te materiały zgromadziły więcej energii cieplnej, a tym samym będą początkowo cieplejsze niż EPS. Materiał EPS szybciej ostygnie; kołki i spoiny klejone będzią najgorętszymi punktami na powierzchni.

Analiza termiczna jasno określa, że istnieją dwa rodzaje warstw powierzchniowych:

materiał izolacyjny o małej przewodności cieplnej i ograniczonej pojemności cieplnej, klej i kołki PCV posiadające wyższą przewodność cieplną oraz większą pojemność cieplną. Podczas wykonywania analizy zdjęć termograficznych, osoba wykonująca pomiar musi być świadoma tego, co jest identyfikowane jako anomalia powierzchni: konieczne jest, aby zrozumieć, zewnętrzny system izolacji cieplnej, a to jak stwierdzono w odpowiednich warunkach środowiskowych, może być uważane jako wada.

FLIR IBROS próbka powierzchni termowizja termiczne systemy ociepleń

Kamera FLIR T640bx

ANIT zdecydował się na wykorzystaniekamery termowizyjnej FLIR T640bx z powodu różnych wymagań technicznych. Badanie próbki wymaga możliwości zbadania luki temperatury blisko 0,5 ° C, do rejestrowania i kontrolowania powierzchni automatycznej zmiany temperatury podczas upływu czasu. Potrzebny aparat również musi być w stanie generować wysokiej jakości obrazy wideo, które mogłyby aktywnie badać zachowania termiczne powierzchni.
FLIR iBros T640bx
Kamera FLIR T640bx idealnie się do tego nadaje. T640bx to wysokiej klasy kamera termowizyjna z wbudowaną wizualną kamerą o rozdzielczości 5MP, opcją wymiennych obiektywów, auto-focusem i dużym 4,3" ekranem dotykowym LCD. Łączy w sobie doskonałą ergonomię z najwyższą jakością obrazu, zapewniając wyrazistość i dokładność oraz rozbudowane możliwości komunikacyjne.

Rys.4 T640bx to wysokiej klasy kamera termowizyjna z wbudowaną kamerą o rozdzielczości 5MP światła widzialnego.

©iBros. Wszelkie prawa zastrzeżone.

Top Desktop version