Dzięki kamerze termowizyjnej możemy stwierdzić, że udało nam się odtworzyć coś co na przestrzeni milionów lat stworzyła natura. Może dziwić porównanie urządzenia technologicznego do natury jednak wytłumaczenie jest proste, lecz aby to zrozumieć musimy przyjrzeć się zasadzie działania kamery termowizyjnej oraz oka.
|
Rys. 1 Budowa ludzkiego oka
Oko ludzkie umożliwia nam zdobywanie bardzo dużej ilości informacji o otoczeniu, o odległościach, kształtach, ruchach oraz barwach, dzięki czemu możemy bezpiecznie poruszać się w przestrzeni oraz analizować obserwowaną sytuację.
Rys.2 Zakres fali widzialnych
Jednak nie wszystkie organizmy widzą tak samo, natura dostosowała sposób widzenia do potrzeb poszczególnych organizmów. Węże posiadają możliwość widzenia fal podczerwonych, za pomocą jamek termicznych, dzięki którym wąż wykrywa nawet minimalne zmiany temperatury.
Zmiany te wywołane są przez stałocieplne zwierzęta (myszy, ptaki), a także te zmiennocieplne (jaszczurki, żaby) ponieważ temperatura ich ciała jest nieco wyższa od temperatury otoczenia. Jamki skierowane są tak, aby wąż mógł określić odległość jak i wielkość swojej ofiary nawet w warunkach ograniczonej widoczności lub ciemną nocą. Organy te wykrywają różnice rzędu 0.001°C.
Rys. 3 Różnice ciepła na ciele ptaka
Teraz już możemy zrozumieć zasadę działania kamery termowizyjnej, która naśladuje i łączy pracę oka i jamek termicznych węży. Promieniowanie cieplne emitowane jest przez istoty żywe, zbiorowisko kropel cieczy, powierzchnię ciała stałego w obserwowanej przestrzeni czyli przez każdy obiekt, którego temperatura przekracza zero absolutne(-273, 15°C).
To promieniowanie przechodzi przez soczewkę i skupia się na detektorze. Współczesne detektory budowane są jako matryce pojedynczych detektorów, zwanych pikselami. Każdy z poszczególnych detektorów przetwarza padające na niego promieniowanie na sygnał elektryczny, który zmienia się zależnie od intensywności promieniowania podczerwonego. Sygnał ten jest przekształcany do postaci cyfrowej i wtedy już widzimy go na wyświetlaczu kamery (zdjęcie termowizyjne, termogram).
Kamera termowizyjna może być wykorzystana przez człowieka do różnych celów. Dzięki niej możemy zidentyfikować wady izolacji termicznej budynków,
uzyskać wiele informacji na temat wykonania prac budowlanych i jakości użytych materiałów oraz strat ciepła w naszych domach. Pozwala na łatwą lokalizacja rur
z ciepłą wodą oraz wycieków i nieszczelności, miejsc pęknięć sieci grzewczej i wodociągowej. Kamera termowizyjna czyni nas tak przebiegłym i skutecznym w oszczędzaniuenergii cieplnej jak przebiegły i sprytny potrafi być wąż w złapaniu i pochłanianiu „ciepła” ;)
Rys.4 Różne temperatury na elewacji budynku pozwalają na wykrycie wad.
Patrycja Surówka
Źródła:
Rys.1 pobrane z kck.wikidot.com
Rys2.-Rys.4 własne materiały
Zakażenia, takie jak COVID-19, SARS i inne choroby, mogą wywoływać objawy, takie jak podwyższona temperatura skóry - możliwy objaw infekcji. Chociaż kamery FLIR nie są w stanie wykrywać ani diagnozować wirusów, te zarejestrowane w USA kamery FDA stanowią prostą, wstępną metodę, która może być pomocna przy zapobieganiu dalszym zarażeniom.
FLIR EST to nowa seria kamer termowizyjnych zaprojektowanych specjalnie do stosowania w pomiarach podwyższonej temperatury skóry.
Modele serii EST nowy tryb FLIR Screen-EST, który oferuje trzy ustawienia: Tryb Ręczny; Tryb Operatora, którym można sterować za pomocą dołączonego przycisku obsługi zdalnej z Bluetooth®; oraz Tryb Automatyczny dla zastosowań w miejscach o dużej przepustowości lub ograniczonym personelu. W trybach Operator i Auto dostępna jest funkcja graficznego wskazywania pozytywnego/negatywnego wyniku pomiaru, można również ustawić alarmy wizualne i dźwiękowe, które wskazują, gdy zmierzona temperatura danej osoby jest wyższa od średniej próbki. Aby jeszcze bardziej zwiększyć dokładność, tryb przesiewania automatycznie generuje średnią temperaturę próbki i porównuje temperaturę skóry osoby z tym poziomem odniesienia, zmniejszając niepewność pomiaru wynikającą z naturalnych wahań temperatury ciała i biorąc pod uwagę specyficzne warunki środowiska. Kamera automatycznie aktualizuje średnią próbkowaną w trybie automatycznym, natomiast w trybie operatora użytkownik jest informowany o konieczności wykonania okresowej aktualizacji średniej poprzez naciśnięcie przycisku operacji zdalnych.
Zgodność z oprogramowaniem FLIR Screen-EST Desktop, zintegrowanym mocowaniem do statywu i zasilaniem zewnętrznym sprawia, że kamery te stanowią dobrą alternatywę dla stałych instalacji.
Tryb FLIR Screen-EST™ to metoda wykorzystująca kamerę do uproszczonego pomiaru podwyższonej temperatury skóry. Ten tryb może wyświetlać alarm, gdy zostanie wykryta temperatura wyższa niż próg zdefiniowany przez użytkownika w stosunku do średniej wartości próbki. Średnia może być aktualizowana ręcznie za pomocą przycisku obsługi zdalnej w trybie operatora lub automatycznie przy każdym nowym badaniu w trybie automatycznym. Jeśli tryb badania wykryje osobę z podwyższoną temperaturą skóry, można ją następnie ocenić za pomocą urządzenia medycznego, takiego jak termometr. W ten sposób tryb FLIR Screen-EST zapewnia szybszą, bezpieczniejszą i bardziej niezawodną metodę przeprowadzania badań przesiewowych podwyższonej temperatury skóry.
FLIR Screen-EST™ Desktop to komputerowe oprogramowanie dla kamer termowizyjnych FLIR serii T, Exx i Axxx. Oprogramowanie wdraża automatyczne narzędzia pomiarowe, takie jak wykrywanie twarzy i automatyczne pobieranie próbek, które skracają czas badań u osób fizycznych do dwóch sekund. Dzięki szybkiej pracy i dużej wydajności oprogramowanie FLIR Screen-EST Desktop jest preferowanym rozwiązaniem do badań przesiewowych wykonywanych w przy wejściach, w punktach kontrolnych i innych obszarach o dużym natężeniu ruchu przy jednoczesnym zachowaniu zalecanych wytycznych dotyczących dystansu społecznego.
ZASTRZEŻENIE: Urządzenia FLIR są przeznaczone do stosowania jako uzupełnienie procedur klinicznych w badaniach temperatury powierzchni skóry. Różne czynniki środowiskowe i metodologiczne mogą wpływać na obrazowanie termiczne, dlatego nie należy na nim polegać jako jedynym wyznaczniku temperatury ciała danej osoby. Do zidentyfikowania podwyższonej temperatury ciała konieczne będzie użycie urządzenia medycznego.
>> Karta techniczna FLIR EXX-EST
DANE TECHNICZNE:
Dane obrazowania |
FLIR E54-EST |
FLIR E86-EST |
Rozdzielczość IR |
320 x 240 pikseli |
464 x 384 pikseli |
Czułość termiczna / NETD |
<40 mK @ 30°C |
<40 mK @ 30°C: obiektyw 24° |
Częstotliwość |
30 Hz |
|
Dane optyki |
|
|
Obiektyw w zestawie |
Obiektyw stały, 24° (17 mm) |
24° (17 mm) lub 42° (10 mm) |
Pole widzenia (FOV) |
24°×18° |
24°×18° lub 42°×32° |
Ostrość |
Ręczna |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
Tryb badań przesiewowych |
|
|
Zakres temperatury |
15°C do 45°C |
|
Dokładność |
±0.3°C |
|
Prezentacja obrazu |
|
|
Wyjście wideo |
DisplayPort przez USB Typu-C |
|
Cyfrowy streaming wideo |
Jednocześnie termiczne i widzialne, USB Typu-C |
|
Obsługa i kontrola |
Na ekranie kamery, USB Typu-C |
|
Wyświetlacz |
4'' ekran dotykowy LCD, 640 x 480 pikseli |
|
Dane ogólne |
|
|
Zakres temperatury pracy |
-15°C do 50°C |
|
Typ baterii |
Akumulator litowo-jonowy |
|
Zasilanie |
Akumulator litowo-jonowy, > 2,5 godziny (typowe zastosowanie) |
|
Zasilanie zewnętrzne |
Zasilacz 90–260 V AC, 50/60 Hz |
|
Wymiary (L x W x H) |
278.4 × 116.1 × 113.1 mm |
|
Waga |
1 kg |
|
Montaż na statywie |
UNC ¼”-20 |
|
Zawartość zestawu |
Kamera termowizyjna z obiektywem, bateria (2 szt.), ładowarka do baterii, osłona przednia, karabińczyk, paski (na rękę i nadgarstek), twarda walizka transportowa, smycze, osłony obiektywu, ściereczka do czyszczenia obiektywu, zasilacze, śrubokręt Torx T10, śruby, kable (USB 2.0 A na USB Typ-C, USB Typ-C na USB Typ-C, USB Typ-C na HDMI), USB-C na USB Typ-A z dołączonym zasilaczem, przycisk zdalej obsługi, karta SD 8GB, dokumentacja w wersji drukowanej. |
Kompaktowa kamera termowizyjna
FLIR C2 - 4 800 pikseli
Rozdzielczość - 80 x 60
Pomiary: -10°C to +150°C
Wyjatkowa gwarancja FLIR Systems: 2-5-10
Główne zalety C2:
Do pobrania: Specyfikacja techniczna kamery termowizyjnej FLIR C2
Rozdzielczość detektora | 80 × 60 (4 800 pikseli) |
Czułość | ‹ 0.10°C |
FOV | 41° x 31° |
Minimalna odległość ostrzenia | IR: 0.15 m (0.49 ft.) MSX®: 1.0 m (3.3 ft.) |
Częstotliwość odświeżania | 9 Hz |
Zakres spektralny | 7.5 - 14 µm |
Wielkość wyświetlacza | 3” (320 x 240 pikseli) |
Auto-orientacja | Tak |
Ekran dotykowy | Tak |
Tryby obrazowania | |
Obraz podczerwony | Tak |
Obraz widziany | Tak |
MSX® | Tak |
Galeria | Tak |
Pomiary | |
Zakres pomiaru temperatury | -10°C to +150°C (14 to 302°F) |
Dokładność | ±2°C lub 2%, (w zależności która wartość jest większa) |
Analiza obrazu | |
Pomiar w punkcie | pomiar lub brak |
Korekcja emisyjności | Tak; matowa/półmatowa/błyszcząca + nastawiana przez użytkownika |
Korekcja pomiarów | Emisyjność, Temperatura odbita |
Ustawienia | |
Palety | Żelazo, Tęcza, Tęcza HC, Szara |
Pamięć | Wbudowana pamięć, zapis co najmniej 500 zdjęć |
Format zapisu | JPEG, 14 bitowe dane pomiarowe |
Streaming wideo | |
Obraz IR nieradiometryczny | Tak |
Obraz światła widzianego | Tak |
Kamera cyfrowa | |
Rozdzielczość | 640 x 480 pikseli |
Ustawienia ostrości | Stałe |
Dodatkowe informacje | |
Gniazdo USB | USB Micro-B: Możliwość przesyłu dany z oraz do komputera, urządzeń mobilnych |
Bateria | 3.7 V Akumulator Li-Ion |
Czas pracy na baterii | 2 godziny |
Ładowanie | ładowanie w kamerze |
Czas ładowania | 1,5 godziny |
Zasilanie zewnętrzne | Zasilacz AC, 90-260 VAC wejście 5 V wyjście do kamery |
Zarządzanie energią | Automatycze wyłączanie |
Temperatura pracy | -10°C do +50°C (14 to 122°F) |
Temperatura przechowywania | -40°C do +70°C (-40 to 158°F) |
Waga | 0.13 kg (0.29 lb.) |
Rozmiar (Dł. x Szer. x Wys.) | 125 x 80 x 24 mm (4.9 x 3.1 x 0.94 in.) |
Zastosowanie kamer C2:
W wyniku coraz większych nacisków na konieczność racjonalnego i oszczędnego korzystania z energii cieplnej oraz wciąż wzrastających opłat za ogrzewanie, chcemy maksymalnie ograniczyć jej zapotrzebowanie w naszych domach. Głównymi czynnikami, które niepostrzeżenie pozbawiają nasze domy ciepła są wady izolacji budynków. Najskuteczniejszą, najprostszą, a zarazem dostępną dla każdego metodą sprawdzenia jakości zastosowanych materiałów, rozwiązań konstrukcyjnych i jakości prac budowlanych jest badanie wykonane kamerą termowizyjną. |
Kamera termowizyjna opiera się na rejestrowaniu promieniowania podczerwonego, które jest niewidzialne dla ludzkiego oka. Każdy obiekt, którego temperatura jest wyższa od zera bezwzględnego czyli od temperatury 0 K (-273,15°C) jest źródłem ciepła i emituje promieniowanie podczerwone. Nawet ciała, które wydają się nam bardzo zimne, takie jak kry lodu na Antarktydzie, również są źródłem tego promieniowania.
Rys. 1 Zdjęcie wykonane kamerą termowizyjną, które daje nam możliwość rozpoznania miejsc cieplejszych bądź zimniejszych.
Kamera ta lokalizuje i określa wielkość występowania promieniowania podczerwonego emitowanego przez dany obiekt. Efektem badania są zdjęcia zwane termografami - obraz cieplny w postaci mapy pokazującej rozkład temperatur, w której każdy piksel posiada swoją wartość temperatury.
Kamera termowizja jest więc rodzajem termometru działającego na odległość, który ma możliwość przedstawienia naszym oczom znacznie więcej, aniżeli jesteśmy w stanie zobaczyć.
Analizę budynku kamerą termowizyjną można wykonać zarówno od zewnątrz budynku, jak i od środka poszczególnych jego pomieszczeń. W obu przypadkach będziemy mogli dostrzec mostki termiczne czyli „dziury”, przez które ucieka cenne ciepło. Gdy wykonujemy pomiar w ogrzewanym pomieszczeniu miejsca ucieczki ciepła są na termogramach pokazywane, jako miejsca zimniejsze i zazwyczaj mają kolor ciemny - niebieski, zgodnie ze skalą temperatur.
Natomiast jeśli pomiary wykonywane są na zewnątrz budynku lub w pomieszczeniach nieogrzewanych ma miejsce odwrotna sytuacja. Wówczas wadliwość izolacji termicznej lub wpływ wilgoci jest pokazywany jako miejsca cieplejsze i jednocześnie – jaśniejsze na zdjęciach.
Rys. 2 Skala temperatur na termogramie mieści się w przedziale od 26.05°C – 6.84°C (barwa jasna oznacza miejsca posiadające wysoką temperaturę, barwa ciemna – niska temperatura).
Możliwości wykorzystania kamery termowizyjnej:
- sprawdzenie poprawności wykonania izolacyjności termicznej fundamentów domu
- wykrywania wad ogrzewania podłogowego i niedrożność tradycyjnej instalacji grzewczej
- lokalizacji miejsc, które ukrywają pod tynkiem: zamurowane okna, wyloty kominów wentylacyjnych
- kamerę termowizyjną można między innymi wykorzystać do ustalenia czy ramy stolarki okiennej i drzwiowej są poprawnie osadzone na ościeżach – tak,
by nie dochodziło do ucieczki ciepła
- można ją stosować do określania strat zimna - w przypadku klimatyzacji
- wykrywania pęknięć lub przerwy w uszczelnieniach budynku
- lokalizacji wilgoci przenikającej przez spoiny i pęknięcia w dachach, sufitach i ścianach, która pozostaje w nich uwięziona, co powoduje gnicie
struktury budynku i powstawanie pleśni
- kamery termowizyjne doskonale nadają się do badania jakości wykonania izolacji cieplnej, oraz zbadania czy zastosowane materiały
w pełni odpowiadają za izolację cieplną
- wykrywanie miejsc nawiewu zimnego powietrza przez gniazdka elektryczne, oraz kratki wentylacyjne
- ocena, w jakim stopniu potrzebny jest remont budynku
Skorygowanie tych błędów i wad w sposób znaczący zwiększa sprawność energetyczną oraz strukturalną integralność budynku.
Szczególnie ważne są miejsca niewidoczne po zakończeniu budowy, które mogą mieć znaczący wpływ na koszty eksploatacji budynku.
Rys.3 Otwory okienne i drzwiowe źle uszczelnione są miejscami największej straty ciepła w budynku
Regularne kontrole struktur za pomocą kamery termowizyjnej od wewnątrz i od zewnątrz pomagają szybko zlokalizować miejsca, gdzie występują mostki termiczne. Oczywiste jest także, że znając źródło i przyczynę strat ciepła – zdecydowanie łatwiej jest z nimi walczyć i starannie zaplanować działania zmierzające do ograniczenia strat energii cieplnej.
Przedsiębiorstwa specjalizujące się w badaniach termowizyjnych budynków mieszkalnych starają się propagować wśród deweloperów, wykonawców i osób indywidualnych ideę kontroli wykonywanych prac przy użyciu kamery termowizyjnej. Staramy się uświadamiać wszystkim, że takie badania przed zakończeniem prac pomagają wwyeliminować wiele niedociągnięć. Sprawdzenie budynku pozwala na usunięcie ewentualnych błędów, w momencie gdy jest jeszcze czas na wprowadzenie poprawek. Pamiętajmy, że badania termowizyjne są wsparciem dla budownictwa.
Patrycja Surówka
Pierwszy wilgotnościomierz termowizyjny MR160
FLIR MR160 - 4 800 pikseli
Rozdzielczość - 80 x 60
Pomiar wilgotności
Wyjatkowa gwarancja FLIR Systems: 2-5-10
Główne zalety MR160:
Pobierz broszurę FLIR Seria MR
Do pobrania: Specyfikacja techniczna wilgotnościomierza termicznego MR160
Rozdzielczość detektora | 80 × 60 (4 800 pikseli) |
Rodzaj detektora |
FLIR Lepton, mikrobolometr FPA (Focal Plane Array) |
Migawka | Zintegrowana migawka z automatyczną korekcją czułości poszczególnych pikseli (Flat Field Correction) |
Częstotliwość odświeżania | 9 Hz |
Zakres spektralny | 7.5 - 14 µm |
Pole widzenia (szer. x wys.) | 51° × 38° |
Czułość | < 150 mK |
Palety obrazu termowizyjnego | Lód |
Minimalna odległość ostrości obrazu termowizyjnego |
10 cm (4”) |
Pomiar wilgotności | |
Zakres pomiaru za pomocą zewnętrznej sondy mierzącej wilgotność (dokładność) |
0-100% WME ± 5% |
Grupy wilgotności mierzonej sondą | 9 grup materiałowych |
Zakres pomiaru wilgotności powierzchnią pomiarową |
0-100, pomiar względny |
Podziałka pomiaru | 0,1 |
Czas odpowiedzi powierzchni pomiarowej |
100 ms |
Czas odpowiedzi zewnętrznej sondy | 750 ms |
Informacje ogólne | |
Typ wyświetlacza | Wyświetlacz graficzny TFT, 320 x 240 pikseli, 2,3”, kolorowy 64K |
Rozdzielczość wyświetlacza (szer. x wys.) | QVGA (320 x 240) |
Format zapisywanego pliku obrazu | BMP z nałożonymi wartościami pomiaru |
Pamięć obrazów | 9999 obrazów |
Orientacja za pomocą lasera | Pojedynczy wskaźnik laserowy skierowany na środek obrazu termowizyjnego |
Zasilanie: | Zintegrowany akumulator |
Działanie na akumulatorze – Czas nieprzerwanej pracy: | Maks. 18 godzin |
Działanie na akumulatorze – Typowa eksploatacja: | 4 tygodnie robocze |
Akumulator | 3,7 V, 3000 mAh (2 akumulatory 1500 mAh Li-ion) ładowane przez port micro USB |
Certyfikaty urządzenia | EN61326 (EMC), EN61010 (akumulator + ładowarka), EN60825-1 klasa 2 (Laser) |
Zatwierdzenia przez odpowiednie agencje | FCC klasa B, CE, UL |
Dostępne akcesoria | |
Etui MR10 | |
Zewnętrzna sonda MR05 igłowa |
Zastosowanie wilgotnościomierza:
Zakażenia, takie jak COVID-19, SARS i inne choroby, mogą wywoływać objawy, takie jak podwyższona temperatura skóry - możliwy objaw infekcji. Chociaż kamery FLIR nie są w stanie wykrywać ani diagnozować wirusów, te zarejestrowane w USA kamery FDA stanowią prostą, wstępną metodę, która może być pomocna przy zapobieganiu dalszym zarażeniom.
FLIR EST to nowa seria kamer termowizyjnych zaprojektowanych specjalnie do stosowania w pomiarach podwyższonej temperatury skóry.
Modele serii EST nowy tryb FLIR Screen-EST, który oferuje trzy ustawienia: Tryb Ręczny; Tryb Operatora, którym można sterować za pomocą dołączonego przycisku obsługi zdalnej z Bluetooth®; oraz Tryb Automatyczny dla zastosowań w miejscach o dużej przepustowości lub ograniczonym personelu. W trybach Operator i Auto dostępna jest funkcja graficznego wskazywania pozytywnego/negatywnego wyniku pomiaru, można również ustawić alarmy wizualne i dźwiękowe, które wskazują, gdy zmierzona temperatura danej osoby jest wyższa od średniej próbki. Aby jeszcze bardziej zwiększyć dokładność, tryb przesiewania automatycznie generuje średnią temperaturę próbki i porównuje temperaturę skóry osoby z tym poziomem odniesienia, zmniejszając niepewność pomiaru wynikającą z naturalnych wahań temperatury ciała i biorąc pod uwagę specyficzne warunki środowiska. Kamera automatycznie aktualizuje średnią próbkowaną w trybie automatycznym, natomiast w trybie operatora użytkownik jest informowany o konieczności wykonania okresowej aktualizacji średniej poprzez naciśnięcie przycisku operacji zdalnych.
Zgodność z oprogramowaniem FLIR Screen-EST Desktop, zintegrowanym mocowaniem do statywu i zasilaniem zewnętrznym sprawia, że kamery te stanowią dobrą alternatywę dla stałych instalacji.
Tryb FLIR Screen-EST™ to metoda wykorzystująca kamerę do uproszczonego pomiaru podwyższonej temperatury skóry. Ten tryb może wyświetlać alarm, gdy zostanie wykryta temperatura wyższa niż próg zdefiniowany przez użytkownika w stosunku do średniej wartości próbki. Średnia może być aktualizowana ręcznie za pomocą przycisku obsługi zdalnej w trybie operatora lub automatycznie przy każdym nowym badaniu w trybie automatycznym. Jeśli tryb badania wykryje osobę z podwyższoną temperaturą skóry, można ją następnie ocenić za pomocą urządzenia medycznego, takiego jak termometr. W ten sposób tryb FLIR Screen-EST zapewnia szybszą, bezpieczniejszą i bardziej niezawodną metodę przeprowadzania badań przesiewowych podwyższonej temperatury skóry.
FLIR Screen-EST™ Desktop to komputerowe oprogramowanie dla kamer termowizyjnych FLIR serii T, Exx i Axxx. Oprogramowanie wdraża automatyczne narzędzia pomiarowe, takie jak wykrywanie twarzy i automatyczne pobieranie próbek, które skracają czas badań u osób fizycznych do dwóch sekund. Dzięki szybkiej pracy i dużej wydajności oprogramowanie FLIR Screen-EST Desktop jest preferowanym rozwiązaniem do badań przesiewowych wykonywanych w przy wejściach, w punktach kontrolnych i innych obszarach o dużym natężeniu ruchu przy jednoczesnym zachowaniu zalecanych wytycznych dotyczących dystansu społecznego.
ZASTRZEŻENIE: Urządzenia FLIR są przeznaczone do stosowania jako uzupełnienie procedur klinicznych w badaniach temperatury powierzchni skóry. Różne czynniki środowiskowe i metodologiczne mogą wpływać na obrazowanie termiczne, dlatego nie należy na nim polegać jako jedynym wyznaczniku temperatury ciała danej osoby. Do zidentyfikowania podwyższonej temperatury ciała konieczne będzie użycie urządzenia medycznego.
>> Karta techniczna FLIR T5XX-EST
DANE TECHNICZNE:
Dane obrazowania |
FLIR T540-EST |
FLIR T560-EST |
Rozdzielczość IR |
464 x 384 pikseli |
640 x 480 pikseli |
Czułość termiczna / NETD |
<40 mK @ 30°C: obiektyw 24° |
|
Częstotliwość |
30 Hz |
|
Dane optyki |
||
Obiektyw w zestawie |
24° (17 mm) lub 42° (10 mm) |
|
Pole widzenia (FOV) |
24°×18° lub 42°×32° |
|
Ostrość |
Ciągła, dalmierzem laserowym (LDM) za jednym naciśnięciem przycisku, na bazie kontrastu za jednym naciśnięciem przycisku, ręczna |
|
Tryb badań przesiewowych |
||
Zakres temperatury |
15°C do 45°C |
|
Dokładność |
±0.3°C |
|
Prezentacja obrazu |
||
Wyjście wideo |
DisplayPort przez USB Typu-C |
|
Cyfrowy streaming wideo |
Jednocześnie termiczne i widzialne, USB Typu-C |
|
Obsługa i kontrola |
Na ekranie kamery, USB Typu-C |
|
Wyświetlacz |
4'' ekran dotykowy LCD, 640 x 480 pikseli |
|
Dane ogólne |
||
Zakres temperatury pracy |
-15°C do 50°C |
|
Typ baterii |
Akumulator litowo-jonowy |
|
Zasilanie |
Akumulator litowo-jonowy, > 4 godzin (typowe zastosowanie) @25°C |
|
Zasilanie zewnętrzne |
Zasilacz 90–260 V AC, 50/60 Hz |
|
Wymiary (L x W x H) |
140 × 201.3 × 84.1 mm |
|
Waga |
1,4 kg |
|
Montaż na statywie |
UNC ¼”-20 |
|
Zawartość zestawu |
Kamera termowizyjna z obiektywem, osłony obiektywu (przednia i tylna), ściereczka do czyszczenia obiektywu, bateria (2 szt.), ładowarka do baterii, zasilacze, paski (osłony obiektywu i na szyję), twarda walizka transportowa, kable (USB 2.0 A na USB Typ-C, USB Typ-C na USB Typ-C, USB Typ-C na HDMI, PD adapter), USB-C na USB Typ-A z dołączonym zasilaczem, przycisk zdalej obsługi, karta SD 8GB, dokumentacja w wersji drukowanej. |
Nowa kamera termowizyjna FLIR serii E BX
Najszybszy sposób, aby uchwycić, analizować i udostępnić obrazy termiczne. Najlepsza seria w tej klasie.
FLIR E60bx - 76 800 pikseli
Rozdzielczość - 320 x 240
MSX - obrazowanie multispektralne
Alarmy: punktu rosy, izolacji
Ręczne ustawienie ostrości
Obiektywy do dalszej rozbudowy
Odporność na upadek z 2 m
Unikalna gwarancja FLIR Systems: 2-5-10
Odswieżona seria kamer termowizyjnych E xx, łączy w sobie wysoka jakość wykonania z łatwością obsługi. Seria E jest zaprojektowana do diagnozowania problemów instalacji elekrtycznych, budowlanych łatwiej, bardziej wydajniej i skuteczniej. Pomagają w tym następujace wlaściwości: rozdzielczość 320 × 240 przy 60 Hz do przechwytywania w czasie rzeczywistym, dzięki czemu nic nie umknie, jasny ekran dotykowy z dużą ilością narzędzi, które pomogą Ci precyzyjnie dostroić i szybko analizować obrazy, Wi-Fi do transferu obrazów i danych do urządzenia mobilnego w celu dalszej analizy, raportowania i natychmiastowego dzielenia się z klientami potrzebującymi detekcji strat energii, pomocy w diagnozie instalacji HVAC, problemów z instalacjami elektrycznymi. Zbuduj swój biznes i swoją wiarygodność w oparciu o kamerę termowizyjna z serii E xx. W ofercie autoruzowanego dystrybutora amerykańskiej firmy FLIR Systems - iBros technic.
FLIR E60 | FLIR E60bx | |
Cena | ||
Dokładność | ±2% lub 2°C | ±2% lub 2°C |
Rozdzielczość detektora | 76800 (320 x 240) | 76800 (320 x 240) |
Czułość termiczna | <0.045°C | <0.045°C |
Zakres pomiaru temperatury | -20°C do 650°C (-4°F to 1,202°F) | -20°C do 120°C (-4°F to 248°F) |
Wielkość wyświetlacza | 3.5”/Panoramiczny | 3.5”/Panoramiczny |
Wizjer | Nie | Nie |
Tryby pomiarowe | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T | 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T |
Punkty pomiarowe | 3 przesuwalne | 3 przesuwalne |
Częstotliwość odświeżania | 60 Hz | 60 Hz |
FOV | 25° × 19° | 25° × 19° |
FOV taki jak w obiektywie | Nie | Nie |
Opcjonalne obiektywy | 2: 15° Tele, 45° Szer. | 2: 15° Tele, 45° Szer. |
Ustawienie ostrości | Manualne | Manualne |
Ciągły auto-fokus | Nie | Nie |
Minimalna odległość ostrzenia | 0.4 m (1.31 ft.) | 0.4 m (1.31 ft.) |
Zdjęcie radiometryczne JPEG zapisane na kartę SD | Tak | Tak |
Film MPEG4 zapisany na kartę SD (nie radiometryczny) | Tak | Tak |
Palety | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) | 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) |
Oprogramowanie FLIR Tools | Tak | Tak |
Raport w kamerze | Nie | Nie |
Czas pracy na baterii | >4 godzin | >4 godzin |
Kamera wbudowana | 3.1 MP | 3.1 MP |
Wbudowane podświetlenie LED | Tak | Tak |
Ekran dotykowy | Tak | Tak |
Zoom cyfrowy | 4× | 4× |
Alarm izolacji | Nie | Tak |
Alarm punktu rosy | Nie | Tak |
Połączenie MeterLink® | Tak | Tak |
Wskaźnik laserowy | Tak | Tak |
Indykator wskaźnika na obrazie IR | Tak | Tak |
Kompas | Nie | Nie |
GPS | Nie | Nie |
Korekcja dla okna wziernikowego IR Window | Tak | Tak |
Delta T | Tak | Tak |
Obraz w obrazie | Dostosowanie PIP | Dostosowanie PIP |
Fuzja termiczna | Nie | Nie |
MSX™ Obrazowanie multispektralne | Tak | Tak |
Szkic na ekranie | Nie | Nie |
Szkic na zdjęciu IR | Nie | Nie |
Notatki tekstowe/głosowe | Tak | Tak |
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ | Tak | Tak |
Streaming video | Tak | Tak |
Zdalne sterowanie FLIR App Remote Control | Nie | Nie |
Odporność na upadek (2 metry/6.6 stóp) | Tak | Tak |
Waga (włącznie z bateriami) | 0.825 kg (1.82 lbs) | 0.825 kg (1.82 lbs) |
Zastosowanie:
Zalety:
Istnieje możliwość podłączenia do kamery termowizyjnej E60 mierników cęgowych marki FLIR Systems. Zobacz, które mierniki współpracują z FLIR E60:
Zewnętrzne systemy ociepleń stają się coraz bardziej popularne na europejskim rynku budowlanym. Wraz z powstaniem bardziej rygorystycznych wymagań certyfikacji energetycznej oraz przepisów w zakresie efektywności energetycznej budynków, konstruktorzy zwracają coraz większą uwagę na dokładne i efektywne stosowanie tych systemów. Niestety wiele metrów kwadratowych zewnętrznych systemów izolacji cieplnej w nowych lub istniejących budynkach zostały zainstalowane bez użycia najlepszych praktyk. W celu lepszego zrozumienia nieprawidłowości w systemach izolacji, jak również charakterystyki cieplnej produktów izolacyjnych, konsorcjum firm, w tym włoskie Stowarzyszenie Izolacji Cieplnej i Akustycznej (Association for Thermal and Acoustic Insulation - ANIT), przeprowadziło projekt badawczy z użyciem kamer termowizyjnych FLIR Systems.
Badania mające na celu uznanie nieprawidłowości w systemach izolacji oraz ich montażu zostały przeprowadzone przez ANIT i dwóch członków tej organizacji, a mianowicie firm: Caparol oraz FLIR Systems. Badanie było koordynowane przez Tep srl, przedsiębiorstwo usług inżynieryjnych, koncentrując się na badaniach nieniszczących efektywności energetycznej budynków.
Budowanie na próbę
W celu badania zjawisk cieplnych charakteryzujących instalację zewnętrznych systemów ociepleń, zbudowano egzemplarz testowy, pokryty z trzech stron płytą izolacji cieplnej (EPS z dodatkiem grafitu). W górnej części próbki ściany pokryte były w taki sposób, że posiadały typowe błędy wykonawcze. Dolna część była odpowiednio wykonana, z lub bez kołków EPS.
Aktywna analiza termograficzna
Próbka ściany monitorowana i analizowana była podczas cyklu ładowania i rozładowania przez energię słoneczną. Jej okresowe obrazy termiczne były rejestrowane i przechowywane. Dzięki aktywnej termografii, ładowanie odbywało się przez promieniowanie słoneczne i wywierało wpływ na powierzchnię próbki testowej. Podczas fazy rozładowania określana była struktura, w której gromadzona jest energia, a następnie monitorowano uwalnianie energii w cieniu. Do tego badania ANIT zdecydował się na użycie kamery termowizyjnej FLIR T640 , która okazała się być najlepiej dostosowana do tego typu badania.
Rys.1 Wzór układu testowego przed pokryciem.
Przenikanie ciepła w różnych warunkach
Aby prawidłowo zrozumieć to, co wydarzyło się w różnych przypadkach wskazanych na obrazie termograficznym, należy przeanalizować i poznać ewentualne anomalia, dotyczące wymiany ciepła w zmiennych warunkach na powierzchni izolacji.
Przy przepływie ciepła w zmiennych warunkach (tj. zmiennych temperaturach powierzchni) odporność termiczna przewodności właściwej i grubość każdego z tych materiałów nie są wystarczające do określenia właściwości termicznych różnych warstw. W rzeczywistości, należy również wziąć pod uwagę gęstość i ciepło właściwe materiałów. Parametry, które charakteryzują materiały w warunkach zmiennych połączonych z promieniowaniem struktury powierzchni zewnętrznej izolacji cieplnej są nazywane efektywnością termiczną.
Efektywność termiczna jest miarą zdolności cieplnej penetracji energii. Istotna jest: temperatura powierzchni zewnętrznej izolacji cieplnej, którą poddaje się silnemu wpływowi promieniowania słonecznego. Następnie bada się w jaki sposób materiał z poziomu powierzchni prowadzi ciepło do kolejnych warstw materiału w połączeniu ze zdolnością materiału do gromadzenia ciepła. Efektywność w tym kontekście wyraża się, jako łatwość materiału do ogrzewania, za pomocą promieniowania słonecznego wewnątrz: im niższa wartość, tym mniejsza jest ilość energii potrzebnej do ogrzewania materiału.
Próbka badawcza składa się z kilku materiałów o różnych wartościach efektywności cieplnej:
Klej do izolacji (EFR. = 906), EPS z dodatkiem grafitu (eff = 27) i PCV - z kołkami (eff = 530).
Wykres 1 przedstawiający różnice temperatur, które występują na górnej części próbki podczas obciążeń termicznych, w których są obecne i celowe błędy instalacyjne.
Wykres 2 temperatury prezentujący górną część próbki pokazuje, że nie ma materiału izolacyjnego o małej przewodności cieplnej, o ograniczonej pojemności cieplnej, kleju i kołków PVC, które mają wysoką przewodność cieplną oraz większą pojemność cieplną. Z uwagi na energię zmagazynowaną w wyniku promieniowania słonecznego izolacja chłodzi się szybciej, ponieważ ilość zmagazynowanej energii jest mniejsza to znaczy, że ma objętościowo mniejszą pojemność cieplną.
Analiza próbki
Analiza właściwości materiałów wykazuje różne zachowanie pod względem energii ładowania spowodowanego promieniowaniem i późniejsze opróżnienia energii wskutek cienia.
a) po naświetleniu promieniowaniem słonecznym stymulacja ogrzeje powierzchnię. PCW i klej, mają większą efektywność niż EPS, więc będą one początkowo chłodniejsze niż SWW i EPS ogrzeje się łatwiej. Kołki i odcinki klejone będą najzimniejszym punktem powierzchni.
b) Następnie badana próbka jest schładzana w cieniu. PVC i klej mają większą objętościową wydajność ciepła, dzięki temu te materiały zgromadziły więcej energii cieplnej, a tym samym będą początkowo cieplejsze niż EPS. Materiał EPS szybciej ostygnie; kołki i spoiny klejone będzią najgorętszymi punktami na powierzchni.
Analiza termiczna jasno określa, że istnieją dwa rodzaje warstw powierzchniowych:
materiał izolacyjny o małej przewodności cieplnej i ograniczonej pojemności cieplnej, klej i kołki PCV posiadające wyższą przewodność cieplną oraz większą pojemność cieplną. Podczas wykonywania analizy zdjęć termograficznych, osoba wykonująca pomiar musi być świadoma tego, co jest identyfikowane jako anomalia powierzchni: konieczne jest, aby zrozumieć, zewnętrzny system izolacji cieplnej, a to jak stwierdzono w odpowiednich warunkach środowiskowych, może być uważane jako wada.
Kamera FLIR T640bx
ANIT zdecydował się na wykorzystaniekamery termowizyjnej FLIR T640bx z powodu różnych wymagań technicznych. Badanie próbki wymaga możliwości zbadania luki temperatury blisko 0,5 ° C, do rejestrowania i kontrolowania powierzchni automatycznej zmiany temperatury podczas upływu czasu. Potrzebny aparat również musi być w stanie generować wysokiej jakości obrazy wideo, które mogłyby aktywnie badać zachowania termiczne powierzchni.
Kamera FLIR T640bx idealnie się do tego nadaje. T640bx to wysokiej klasy kamera termowizyjna z wbudowaną wizualną kamerą o rozdzielczości 5MP, opcją wymiennych obiektywów, auto-focusem i dużym 4,3" ekranem dotykowym LCD. Łączy w sobie doskonałą ergonomię z najwyższą jakością obrazu, zapewniając wyrazistość i dokładność oraz rozbudowane możliwości komunikacyjne.
Rys.4 T640bx to wysokiej klasy kamera termowizyjna z wbudowaną kamerą o rozdzielczości 5MP światła widzialnego.
Panele słoneczne okazały się być mądrą, przyszłościową inwestycją w zakresie ekonomii i ekologii. Ale tak jak w innych technologiach, mogą występować błędy. Kamery termowizyjne są idealne do
szybkiego wykrycia tych awarii. Heinz Simmler, właściciel szwajcarskiej firmy kontroli fotowoltaicznej Energie Netzwerk jest zapalonym zwolennikiem tej technologii.
Termowizja może dostarczyć właścicielom i instalatorom paneli słonecznych niezbędnego spojrzenia na wewnętrze moduły paneli słonecznych i budowę układu fotowoltaicznego. Wadliwe komórki, skrzynki połączeniowe, kable, falowniki lub nieprawidłowo podłączone moduły mogą być zlokalizowane przez wysokiej rozdzielczości kamery termowizyjne. Energie Netzwerk, z siedzibą w Bachenbülach – Szwajcaria, specjalizuje się w termografii fotowoltaicznej i jest certyfikowanym inspektorem, zgodnie z normą EN ISO 9712 "Badania nieniszczące -- Kwalifikacja i certyfikacja personelu badań nieniszczących".
"Po zebraniu wieloletniego doświadczenia w instalacji i konstrukcji paneli słonecznych dla dużej firmy, postanowiłem rozpocząć działalność na własną rękę ze wspólnikiem w 2014 roku ", mówi Heinz Simmler. "Wcześniej pracowałem w firmie Emitec Messtechnik AG, firma doradcza i dystrybutor kamer FLIR. W ten sposób zaznajomiłem się z mocą termiczną. A kiedy nadszedł czas na zakup kamery termowizyjnej, nie było mowy o tym, że nie będzie to kamera FLIR.”
Rys. 1 Heinz Simmler: "Kiedy nadszedł czas, aby kupić kamery termowizyjne, było oczywiste, że potrzebujemy kamery termowizyjnej FLIR. "
Kontrole paneli słonecznych
Zwykle są trzy sytuacje, w których ludzie potrzebują inspekcji termicznej, według Heinza Simmlera: "Przede wszystkim, w czasie instalacji, klienci chcą mieć pewność, że wszystko działa. W pełni operacyjny panel słoneczny pozwoli instalatorowi dostarczyć certyfikat jakości. Druga sytuacja: w czasie pracy całej instalacji słonecznej, gdy coś się dzieje i jest widoczne w wyniku zmniejszonej produkcji. Trzecia najczęstrza sytuacja: przed zakończeniem gwarancji, klient zazwyczaj chce wiedzieć, czy wszystko jest jeszcze w porządku. "
Cienie powodujące zmniejszenie wydajności
Panel słoneczny składa się z kilku ogniw fotowoltaicznych. Zawsze, gdy jedna lub więcej z tych komórek nie działa prawidłowo, kamera termowizyjna będzie to odbierać w postaci różnicy temperatur.
Pozwoli to właścicielowi i instalatorowi, stać się świadomymi obniżonej wydajności, a co za tym idzie, podjąć odpowiednie środki. "Częstym problemem jest zmniejszona wydajność spowodowana zacienieniem" mówi Heinz Simmler. "Nawet kwiat, który rzuca cień na różne ogniwa słoneczne może spowodować 30% mniej mocy w tych komórkach. Wynikiem jest również, to że niektóre komórki solarne stają się cieplejsze, co w dłuższej perspektywie nie jest zbyt dobre dla instalacji.
Gdy taka sama ilość światła słonecznego jest oddawana na wszystkie ogniwa słoneczne, będą one produkowały taką samą ilość prądu.
Rys. 2 Kamera termowizyjna wykryje defekty komórek jako gorących punktów, które mogą spowodować uszkodzenie panelu słonecznego w dłuższej perspektywie.
Jednak kiedy pewna ilość komórek będzie w cieniu, na przykład w cieniu komina, wtedy wytworzą mniej prądu. Mimo to prąd z sąsiednich komórek, które nie są przysłonięte musi przejść przez te mniej aktywne komórki. Prąd, który przeforsowuje te komórki będzie je rozgrzewał. Kamera termowizyjna odbiera to jako gorące miejsca, które w dłuższej perspektywie mogą spowodować uszkodzenie panelu słonecznego.
FLIR T420 kamera i soczewki
W 2014 roku, Energie Netzwerk zakupił FLIR T420 do użycia przy inspekcjach fotowoltaicznych. Ta kamera termowizyjna o rozdzielczości 320x240 pikseli i posiada szeroki wachlarz funkcji, które sprawiają, że praca termografajest dużo łatwiejsza. Jako uzupełnienie standardowego wyposażenia kamery, Energie Netzwerk zakupił również dodatkowo 15° obiektyw teleskopowy i obiektyw o polu widzenia 45°.
Obiektywy 15° są często wybieranymi akcesoriomi, zapewniającymi prawie dwukrotne powiększenie w stosunku do 25° soczewki. "Ten obiektyw jest idealny do wykonywania inspekcji termicznych z odległości, lub gdy trzeba zbadać dach z parteru", mówi Heinz Simmler. "Obiektyw 45° jest idealny, gdy jesteś na dachu i nie masz dużo miejsca do manewru.''
Rys. 3 FLIR T420 ma rozdzielczość 320x240 pikseli i posiada szeroki wachlarz funkcji, które sprawiają, że praca termografajest dużo łatwiejsza. Obraz paneli słoneccznych w różnych odcieniach, w celu dostrzeżenia różnego typu wad i defektów w pracy instalacji.
Multi Spectral Dynamic Imaging (MSX)
FLIR Systems ostatnio dodał Multi Spectral Dynamic Imaging (MSX) technologia do każdej kamery z zakresu jej profilaktycznej konserwacji. Ta nowa funkcja daje niezwykle bogate w szczegóły obrazy i produkuje lepsze tekstury w obrazie termicznym. Dzięki MSX można wykryć więcej nieprawidłowości, można zrobić bardziej szczegółowo analizy, a wnioski wyciągnąć w ułamku sekundy.
Dodanie MSX było również sukcesem Heinz Simmlera: "MSX pozwala zobaczyć dokładnie, w której komórce panelu słonecznego jest problem. To nie jest ważne tylko dla nas; jest to także sposób na to, aby pokazać klientowi, gdzie jest problem i co należy zrobić. Korzystam z funkcji MSX bardzo często. I także m.in. MSX jest materiałem w moich raportach. "
Łatwość użycia
Obok MSX, kamera FLIR T420 posiada także przydatne funkcje, które sprawiają, że praca termografapanelu słonecznego staje się łatwiejsza. Na przykład funkcja adnotacji jest czymś, z czego Heinz Simmler często korzysta. Dzięki tej funkcji możliwe jest dodawanie komentarzy głosowych przy użyciu zestawu słuchawkowego Bluetooth.
"Ta funkcja dla mnie okazała się być przydatna, zwłaszcza gdy jesteśmy tam na dachu patrząc na dziesiątki paneli słonecznych. To takie proste dodać komentarz do obrazu, jak 'trzeci rząd, drugi panel z lewej strony'. Nie ma potrzeby, aby przynosić dodatkowe zestawy papieru lub tabelek do sporządzenia notatek''.
Rys. 4 Zestaw słuchawkowy Bluetooth umożliwia wstawianie komentarzy głosowych na temat obrazu. To takie proste, aby dodać komentarz: "trzeci rząd, drugiego panelu z lewej strony".
Strażacy polegają na niezawodnej technologii do wykonywania wymagających zadań: znalezienie osoby w pomieszczeniu wypełnionym gęstym dymem i poruszanie się w trudnym otoczeniu...
Na szczęście kamery termowizyjne wspierają strażaków w trudnych akcjach i dzięki wykorzystaniu ciepła emitowanego przez otoczenie, pozwalają widzieć przez dym, zlokalizować przedmioty oraz pokazać gorące punkty.
Jednak w przypadkach, gdy temperatury otoczenia wykazują mały kontrast, uzyskanie dobrego obrazu termalnego jest trudne i czasochłonne. W takim przypadku z pomocą przychodzi najnowsza technologia firmy FLIR – FSX ™, czyli innowacyjne ulepszenie obrazu.
Nową technologię FSX ™ posiadają najnowsze modele kamer FLIR dedykowane Strażom Pożarnym – kamera FLIR K55 oraz kameraFLIR K45. Dzięki innowacyjnemu ulepszeniu obrazu strażacy mogą zobaczyć obraz w bardzo wyrazistych szczegółach.
Co to jest FSX™?
Kamery termowizyjne FLIR pokazują przejrzysty obraz nawet w najciemniejszym i bardzo zadymionym otoczeniu. Czasem jednak bardzo trudnym wyzwaniem dla kamery może być wykrycie celu nawet, jeśli teoretycznie znajduje się on w zasięgu kamery. Z kolei dla ratownika może być dużym wyzwaniem rozpoznanie, co dokładnie znajduje się na obrazie kamery. To znacząco wpływa na czas reakcji i wykrycia istotnych zdarzeń podczas akcji, lub co gorsze, niezauważenia. Dlatego FLIR Systems opracował potężny algorytm, który pomaga strażakom rozwiązać problem znalezienia obszarów o niskim kontraście w wysoce dynamicznym otoczeniu.
FSX™ to zaawansowany algorytm nieliniowej obróbki obrazu, który zachowuje szczegóły w szerokim zakresie dynamiki obrazów. FSX ™ potrafi wydobyć z oryginalnego obrazu szczegóły takie jak krawędzie i rogi. Dane te są łączone z oryginalnym obrazem, aby stworzyć zdjęcie z rozbudowanymi szczegółami. W rzeczywistości, szczegółowy obraz pasuje do całkowitego zakresu dynamiki obrazu oryginalnego, co jest szczególnie ważne dla użytkownika, nawet w tak ekstremalnych temperaturach, które są typowe dla pracy strażaka
Krótszy czas wykrycia
Strażacy muszą szybko wykrywać cele, bez dokonywania ręcznych korekt obrazu. To wszystko jest możliwe z funkcją FSX ™.
FSX™ zapewnia wyraźny, ostry obraz w każdym możliwym miejscu pożaru uwzględniając najmniejsze różnice temperatur. Mały, gorący obiekt na zimnym tle będzie miał tak samo wyraziste szczegóły co na tle o podobnej skali temperatur. Dzięki FSX ™ ratownicy są w stanie w łatwiejszy sposób wykryć obiekty w otoczeniu ognia. W przeciwieństwie do innych rozwiązań tego typu, FSX ™ wyjątkowo dostosowuje się do zmieniających się warunków otoczenia. Oznacza to, że operator kamery będzie w stanie w pełni skupić się w każdych warunkach na obrazie, a nie na kontroli pracy kamery.
Kamery termowizyjne do zastosowań przeciwpożarowych
Wejście do płonącego budynku lub zbliżanie się do przemysłowego pożaru jest niebezpieczną pracą. Strażacy muszą w dużym stopniu polegać na swoim zespole i narzędziach. Kamery termowizyjne są wyjątkowymi przyrządami, które pomagają strażakom chronić zarówno życie innych, jak i własne .Kamery termowizyjne widzą przez dym, dając strażakom lepsze rozeznanie w sytuacji, zarówno ze względu na swoje położenie w budynku, jak i w stosunku do członków zespołu. Pomagają również w znalezieniu ludzi uwięzionych w pożarze. Kamery termowizyjne są także używane do poznania otoczenia, w czasie pożarowej akcji szukająco-ratującej. Ponieważ mierzą i wizualnie przedstawiają temperatury z odległości, co również jest pomocne strażakom do każdego rodzaju wtargnięć, skoków i uników.
FSX ™ - innowacyjne ulepszenie obrazu
Każda kamera termowizyjna jest wsparciem dla strażaka podczas akcji. Kamera termowizyjna, która jest wyposażona w FSX ™ będzie pokazywała bardzo ostry i wyraźny obraz termiczny w najdrobniejszych szczegółach, dzięki czemu strażak będzie mógł podjąć właściwą decyzję wtedy, gdy liczą się sekundy.