iBros technic - dystrybutor - kamery termowizyjne FLIR w Polsce

Switch to desktop Register Login

 

Zewnętrzne systemy ociepleń stają się coraz bardziej popularne na europejskim rynku budowlanym. Wraz z powstaniem bardziej rygorystycznych wymagań certyfikacji energetycznej oraz przepisów w zakresie efektywności energetycznej budynków, konstruktorzy zwracają coraz większą uwagę na dokładne i efektywne stosowanie tych systemów. Niestety wiele metrów kwadratowych zewnętrznych systemów izolacji cieplnej w nowych lub istniejących budynkach zostały zainstalowane bez użycia najlepszych praktyk. W celu lepszego zrozumienia nieprawidłowości w systemach izolacji, jak również charakterystyki cieplnej produktów izolacyjnych, konsorcjum firm, w tym włoskie Stowarzyszenie Izolacji Cieplnej i Akustycznej (Association for Thermal and Acoustic Insulation - ANIT), przeprowadziło projekt badawczy z użyciem kamer termowizyjnych FLIR Systems.

Badania mające na celu uznanie nieprawidłowości w systemach izolacji oraz ich montażu zostały przeprowadzone przez ANIT i dwóch członków tej organizacji, a mianowicie firm: Caparol oraz FLIR Systems. Badanie było koordynowane przez Tep srl, przedsiębiorstwo usług inżynieryjnych, koncentrując się na badaniach nieniszczących efektywności energetycznej budynków.

Budowanie na próbę

W celu badania zjawisk cieplnych charakteryzujących instalację zewnętrznych systemów ociepleń, zbudowano egzemplarz testowy, pokryty z trzech stron płytą izolacji cieplnej (EPS z dodatkiem grafitu). W górnej części próbki ściany pokryte były w taki sposób, że posiadały typowe błędy wykonawcze. Dolna część była odpowiednio wykonana, z lub bez kołków EPS.

Aktywna analiza termograficzna

Próbka ściany monitorowana i analizowana była podczas cyklu ładowania i rozładowania przez energię słoneczną. Jej okresowe obrazy termiczne były rejestrowane i przechowywane. Dzięki aktywnej termografii, ładowanie odbywało się przez promieniowanie słoneczne i wywierało wpływ na powierzchnię próbki testowej. Podczas fazy rozładowania określana była struktura, w której gromadzona jest energia, a następnie monitorowano uwalnianie energii w cieniu. Do tego badania ANIT zdecydował się na użycie kamery termowizyjnej FLIR T640 , która okazała się być najlepiej dostosowana do tego typu badania.
FLIR IBROS próbka powierzchni termiczne systemy ociepleń

 

 

 

 

 

 

 

 

 

 

 

 Rys.1 Wzór układu testowego przed pokryciem.

Przenikanie ciepła w różnych warunkach

Aby prawidłowo zrozumieć to, co wydarzyło się w różnych przypadkach wskazanych na obrazie termograficznym, należy przeanalizować i poznać ewentualne anomalia, dotyczące wymiany ciepła w zmiennych warunkach na powierzchni izolacji.

Przy przepływie ciepła w zmiennych warunkach (tj. zmiennych temperaturach powierzchni) odporność termiczna przewodności właściwej i grubość każdego z tych materiałów nie są wystarczające do określenia właściwości termicznych różnych warstw. W rzeczywistości, należy również wziąć pod uwagę gęstość i ciepło właściwe materiałów. Parametry, które charakteryzują materiały w warunkach zmiennych połączonych z promieniowaniem struktury powierzchni zewnętrznej izolacji cieplnej są nazywane efektywnością termiczną.

Efektywność termiczna jest miarą zdolności cieplnej penetracji energii. Istotna jest: temperatura powierzchni zewnętrznej izolacji cieplnej, którą poddaje się silnemu wpływowi promieniowania słonecznego. Następnie bada się w jaki sposób materiał z poziomu powierzchni prowadzi ciepło do kolejnych warstw materiału w połączeniu ze zdolnością materiału do gromadzenia ciepła. Efektywność w tym kontekście wyraża się, jako łatwość materiału do ogrzewania, za pomocą promieniowania słonecznego wewnątrz: im niższa wartość, tym mniejsza jest ilość energii potrzebnej do ogrzewania materiału.

Próbka badawcza składa się z kilku materiałów o różnych wartościach efektywności cieplnej:

Klej do izolacji (EFR. = 906), EPS z dodatkiem grafitu (eff = 27) i PCV - z kołkami (eff = 530).

Wykres 1

Wykres 1 przedstawiający różnice temperatur, które występują na górnej części próbki podczas obciążeń termicznych, w których są obecne i celowe błędy instalacyjne.

Wykres 2
Wykres 2 temperatury prezentujący górną część próbki pokazuje, że nie ma materiału izolacyjnego o małej przewodności cieplnej, o ograniczonej pojemności cieplnej, kleju i kołków PVC, które mają wysoką przewodność cieplną oraz większą pojemność cieplną. Z uwagi na energię zmagazynowaną w wyniku promieniowania słonecznego izolacja chłodzi się szybciej, ponieważ ilość zmagazynowanej energii jest mniejsza to znaczy, że ma objętościowo mniejszą pojemność cieplną.

Analiza próbki

Analiza właściwości materiałów wykazuje różne zachowanie pod względem energii ładowania spowodowanego promieniowaniem i późniejsze opróżnienia energii wskutek cienia.

a) po naświetleniu promieniowaniem słonecznym stymulacja ogrzeje powierzchnię. PCW i klej, mają większą efektywność niż EPS, więc będą one początkowo chłodniejsze niż SWW i EPS ogrzeje się łatwiej. Kołki i odcinki klejone będą najzimniejszym punktem powierzchni.

b) Następnie badana próbka jest schładzana w cieniu. PVC i klej mają większą objętościową wydajność ciepła, dzięki temu te materiały zgromadziły więcej energii cieplnej, a tym samym będą początkowo cieplejsze niż EPS. Materiał EPS szybciej ostygnie; kołki i spoiny klejone będzią najgorętszymi punktami na powierzchni.

Analiza termiczna jasno określa, że istnieją dwa rodzaje warstw powierzchniowych:

materiał izolacyjny o małej przewodności cieplnej i ograniczonej pojemności cieplnej, klej i kołki PCV posiadające wyższą przewodność cieplną oraz większą pojemność cieplną. Podczas wykonywania analizy zdjęć termograficznych, osoba wykonująca pomiar musi być świadoma tego, co jest identyfikowane jako anomalia powierzchni: konieczne jest, aby zrozumieć, zewnętrzny system izolacji cieplnej, a to jak stwierdzono w odpowiednich warunkach środowiskowych, może być uważane jako wada.

FLIR IBROS próbka powierzchni termowizja termiczne systemy ociepleń

Kamera FLIR T640bx

ANIT zdecydował się na wykorzystaniekamery termowizyjnej FLIR T640bx z powodu różnych wymagań technicznych. Badanie próbki wymaga możliwości zbadania luki temperatury blisko 0,5 ° C, do rejestrowania i kontrolowania powierzchni automatycznej zmiany temperatury podczas upływu czasu. Potrzebny aparat również musi być w stanie generować wysokiej jakości obrazy wideo, które mogłyby aktywnie badać zachowania termiczne powierzchni.
FLIR iBros T640bx
Kamera FLIR T640bx idealnie się do tego nadaje. T640bx to wysokiej klasy kamera termowizyjna z wbudowaną wizualną kamerą o rozdzielczości 5MP, opcją wymiennych obiektywów, auto-focusem i dużym 4,3" ekranem dotykowym LCD. Łączy w sobie doskonałą ergonomię z najwyższą jakością obrazu, zapewniając wyrazistość i dokładność oraz rozbudowane możliwości komunikacyjne.

Rys.4 T640bx to wysokiej klasy kamera termowizyjna z wbudowaną kamerą o rozdzielczości 5MP światła widzialnego.

Właściwości

Nowa seria BX o rozszerzonych parametrach.

FLIR T620 & T640 (bx) - 307 200 pikseli
Rozdzielczość - 640 x 480

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety serii T 6xx:

  • UltraMax – jeszce wieksza rozdzielczość na zdjęciach termowizyjnych - teraz kamera termowizyjna FLIR pozwala na wykonywanie zdjęć termowizyjnych z 4x wiekszą rozdzielczością
  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Komunikacja bezprzewodowa – wbudowany modół Wi-Fi pozwala na komunikację z urzadzeniami mobilnymi takimi jak telefony komórkowe, laptopy. Dzięki darmowym aplikacjom mozna przesyłac dane do urządzeń mobilnych, zdalnie sterować kamerą, ogladac obraz z kamery w czasie rzeczywistym
  • Notatki na ekranie – dotykowy ekran pozwala na nanoszenie notatek za pomocą rysika, nie ma potrzeby czekać, aż zdjęcie zostanie przeslane do komputera. Jesli znajdziesz jakiś punkt na ktory trzeba zwrócic szczególna uwage - zaznacz go!
  • Notatki głosowe – masz watpliwości, chcesz cos podkreślić, masz zajete ręce - nagraj notatke głosowa i dołącz ja do zdjecia.
  • Obrotowy obiektyw - pozwala na pochylenie obiektywu w zakresie 120º, umozliwia wykonywanie zdjęć w trudno dostępnych miejscach.
  • Fuzja termiczna oraz obraz w obrazie - pozwala na umieszczenie dowolnie skalowalnego obrazu termicznego w obrazie widzialnym
  • Wbudowany GPS - dodaj do obrazu współrzędne geograficzne
  • Nastawa ostrości - ręczna i automatyczna nastawa ostrości
  • Wbudowany kompas - podaje kierunek w jakim wykonywane jest obrazowanie termiczne

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej T620 oraz T640 (bx):

  FLIR T620 FLIR T640
Dokładność ±2% lub 2°C ±2% lub 2°C
Rozdzielczość detektora 307 200 (640 x 480) 307 200 (640 x 480)
Czułość termiczna <0.04°C <0.035°C
Zakres pomiaru temperatury -40°C do 650°C (-40°F to 1,202°F) opcjonalnie do 2 000°C (3,632°F) -40°C do 2,000°C (-40°F to 3,632°F)
Wielkość wyświetlacza 4.3”/Panoramiczny 4.3”/Panoramiczny
Wizjer Nie Tak
Tryby pomiarowe 5 trybów: 5 punktów, 5 powierzchni, Izoterma, Auto punkt ciepły/zimny; Delta T 5 trybów: 5 punktów, 5 powierzchni, Izoterma, Auto punkt ciepły/zimny; Delta T
Punkty pomiarowe 10 przesuwalnych 10 przesuwalnych
Częstotliwość odświeżania 30 Hz 30 Hz
FOV 25° × 19° 25° × 19°
FOV taki jak w obiektywie Tak Tak
Opcjonalne obiektywy 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um
Ustawienie ostrości Manualne & Automatyczne Manualne & Automatyczne
Ciągły auto-fokus Nie Tak
Minimalna odległość ostrzenia 0.25 m (9.8 in.) 0.25 m (9.8 in.)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak Tak
Palety 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami)
Oprogramowanie FLIR Tools Tak Tak
Raport w kamerze Tak Tak
Czas pracy na baterii >2.5 godzin >2.5 godzin
Kamera wbudowana 5MP 5MP
Wbudowane podświetlenie LED Tak Tak
Ekran dotykowy Tak Tak
Zoom cyfrowy
Alarm izolacji Nie Nie
Alarm punktu rosy Nie Nie
Połączenie MeterLink® Tak Tak
Wskaźnik laserowy Tak Tak
Indykator wskaźnika na obrazie IR Tak Tak
Kompas Tak Tak
GPS Tak Tak
Korekcja dla okna wziernikowego IR Window Tak Tak
Delta T Tak Tak
Obraz w obrazie Dostosowanie PIP Dostosowanie PIP
Fuzja termiczna Tak Tak
MSX™ Obrazowanie multispektralne Tak Tak
Szkic na ekranie Tak Tak
Szkic na zdjęciu IR Nie Tak
Notatki tekstowe/głosowe Tak Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak Tak
Streaming video Tak Tak
Zdalne sterowanie FLIR App Remote Control Tak Tak
Odporność na upadek (2 metry/6.6 stóp) Nie Nie
Waga (włącznie z bateriami) 1.3 kg (2.87 lbs) 1.3 kg (2.87 lbs)

 

Zastosowanie kamer T 6xx:

  • Wykonywanie pomiarów testowych instalacji 
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

Zalety kamer termowizynych z serii T 6xx:

  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 1,3 kg
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 2,5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

breaker-panel-infrared breaker-panel-infrared
discharge-pipe discharge-pipe
single-phase-transformer single-phase-transformer
motor-bearing-infrared motor-bearing-infrared

MSX

 

flir-t640-motors flir-t640-motors
flir-t640-msx-motors flir-t640-msx-motors
flir-t640-panel flir-t640-panel
flir-t640-msx-panel flir-t640-msx-panel
flir-t640-recessed-lights flir-t640-recessed-lights
flir-t640-msx-recessed-lights flir-t640-msx-recessed-lights

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej T640:

air-infiltration air-infiltration
missing-insulation missing-insulation
pump-motor pump-motor
radiant-heat radiant-heat
wet-insulation-infrared wet-insulation-infrared
tank-levels-infrared tank-levels-infrared

 

 

  Zapewnienie jakości ma fundamentalne znaczenie w systemach solarnych. Bezawaryjna praca paneli jest warunkiem efektywnego wytwarzania energii, długiej żywotności oraz szybkiego zwrotu inwestycji. Aby zapewnić bezawaryjną pracę, wymagana jest prosta i niezawodna metoda oceny wydajności panelu słonecznego zarówno w procesie produkcyjnym, jak i po montażu.  

 

 

 

FLIR iBros panele słoneczne

Zastosowanie kamer termowizyjnych w badaniach paneli słonecznych ma wiele zalet. Nieprawidłowości mogą być wyraźnie widoczne na ostrym obrazie termicznym oraz - w przeciwieństwie do większości innych metod - kamery termiczne mogą być używane do skanowania zainstalowanych paneli słonecznych, w czasie normalnej pracy. Wreszcie, kamery termowizyjne pozwalają skanować duże powierzchnie w krótkim czasie.FLIR iBros panele słoneczne cieplejsze miejsca

W dziedzinie badań i rozwoju kamery termowizyjne są narzędziem do oceny ogniw słonecznych i paneli. Dla tych skomplikowanych pomiarów, kamery o wysokiej wydajności, zwykle z chłodzonymi detektorami stosuje się w kontrolowanych warunkach laboratoryjnych.

Jednakże stosowanie kamer termowizyjnych do paneli słonecznych nie jest ograniczone tylko w dziedzinie badań. Kamery termowizyjne są obecnie coraz częściej używane do kontroli jakości paneli słonecznych przed instalacją oraz do badań kontrolnych i konserwacyjnych po zamontowaniu panelu. Kamery te są przenośne, lekkie i pozwalają na bardzo elastyczne wykorzystanie w terenie.

Za pomocą kamery termowizyjnej potencjalne obszary problemowe mogą być wykryte i naprawione przed wystąpieniem rzeczywistych problemów i awarii. Ale nie każda kamera termowizyjna jest przeznaczona do kontroli ogniw słonecznych. Są pewne zasady i wytyczne, które muszą być przestrzegane w celu przeprowadzenia skutecznych kontroli i wyciągnięcia właściwych wniosków. Przykłady w tym artykule są oparte na modułach fotowoltaicznych z krystalicznych ogniw słonecznych; jednak zasady i wytyczne mają również zastosowanie do kontroli termograficznych modułów cienkowarstwowych.

Procedury kontroli paneli słonecznych z kamer termowizyjnych
Podczas procesu rozwoju i produkcji komórki słoneczne są uruchamiane elektrycznie lub z wykorzystaniem lampy błyskowej. Gwarantuje to, że istnieje wystarczający kontrast termiczny do dokładnych pomiarów termowizyjnych. Metoda ta nie może być stosowana przy badaniu paneli słonecznych w tej dziedzinie, jednak operator musi upewnić się, że nie ma wystarczającej ilości energii dostarczonej przez Słońce.

Aby osiągnać wystarczający kontrast termiczny podczas sprawdzania ogniw słonecznych, potrzebne jest natężenie promieniowania słonecznego 500 W / m2 lub więcej. Dla maksymalnego efektu wskazane jest natężenie promieniowania słonecznego 700W / m2. Natężenie promieniowania słonecznego opisuje incydent chwilowej mocy na powierzchni w jednostkach kW / m2, która może być mierzona poprzez piranometr (globalne promieniowanie słoneczne)lub pyrheliometr (bezpośrednie promieniowanie słoneczne). To w dużym stopniu zależy od położenia i lokalnych warunków pogodowych. Niskie temperatury na zewnątrz mogą również zwiększyć kontrast termiczny.

Jaki typ aparatu jest potrzebny?
Przenośne kamery termowizyjne do predykcyjnych przeglądów serwisowych zazwyczaj mają niechłodzony detektor mikrobolometryczny w zakresie 8-14 mikrometrów. Jednak szkło nie jest przezroczyste w tym obszarze. Gdy ogniwa słoneczne są kontrolowane od przodu, kamera termowizyjna widzi dystrybucję ciepła na powierzchni szkła, ale tylko pośrednio dystrybucję ciepła w komórkach bazowych. Dlatego różnice temperatur, które mogą być mierzone i obserwowane na powierzchni panelu słonecznego są małe. Aby te różnice były widoczne, kamera termowizyjna wykorzystywana do tych kontroli potrzebuje czułości termicznej ≤0.08K. Do wyraźnej wizualizacji małych różnic temperatury w obrazie termicznym, aparat powinien mieć możliwość ręcznej regulacji poziomu i rozpiętości.

Moduły fotowoltaiczne są zwykle montowane na bardzo refleksyjnej konstrukcji aluminiowej, która przedstawia się jako zimny obszar na obrazie termicznym, ponieważ odbija promieniowanie cieplne emitowane przez niebo. W praktyce oznacza to, że kamera termowizyjna rejestruje temperaturę ramową znacznie poniżej 0 ° C. Ponieważ wyrównanie histogramu obrazowania kamery termicznej automatycznie dostosowuje się do maksymalnych i minimalnych temperatur, wiele małych anomalii termicznych nie będzie od razu widoczne. Aby osiągnąć wysoki kontrast obrazu termicznego będzie potrzebna ciągła ręczna korekcja poziomu i zakresu.

FLIR iBros panele słoneczne DDE

 Tzw. DDE (Digital Detail Enhancement) zapewnia funcjonalne rozwiązanie.DDE automatycznie optymalizuje kontrast obrazu w scenach z wysokim zakresem dynamiki, a obraz termiczny nie musi być regulowany ręcznie. Kamera termowizyjna z funkcją DDE idealnie nadaje się do szybkich i dokładnych kontroli paneli słonecznych.

Zdjęcie termowizyjne bez DDE (od lewej) i z DDE (od prawej)

Przydatne funkcje

Kolejną przydatną funkcją dla kamery termowizyjnej jest tagowanie zdjęć termalnych z danych GPS. Pozwala to na łatwe zlokalizowanie wadliwych modułów w dużych obszarach, np. w gospodarstwach słonecznych, a także odnoszenie obrazów termicznych do urządzeń, np. w raportach.

Kamera termowizyjna powinna mieć wbudowany aparat cyfrowy, który wiąże się z obrazem cyfrowym (cyfrowe zdjęcia) umożliwiając zapisywanie z powiązanego obrazu termicznego. Jest to tzw. tryb fuzji pozwalający na nakładanie obrazów cieplnych i wizualnych, które mogą być również użyteczne. Przy tworzeniu raportów mogą okazać się przydatne komentarze głosowe oraz tekstowe, które mogą być zapisywane w kamerze razem z obrazem termicznym. 

 

Ustawienie aparatu: odbicia i emisyjność
Mimo, że szkło ma emisyjność 0.85-0.90 w zakresie 8-14 mikrometrów, pomiary termiczne na powierzchni szkła nie są łatwe do zrobienia. Odbicia szklane są lustrzane, co oznacza, że otaczające przedmioty o różnych temperaturach mogą być wyraźnie widoczne w obrazie termicznym. W najgorszym przypadku powoduje to błędną interpretację (fałszywe "gorące punkty") oraz błędy pomiarowe.

Aby uniknąć odbicia kamery termowizyjnej i operatora w szkle, instrument nie powinien być ustawiony prostopadle do sprawdzanego modułu. Jednak emisyjność jest najwyższa, gdy kamera ustawiona jest prostopadłe, a zmniejsza się wraz ze wzrostem kąta. Dobrym rozwiązaniem jest kąt patrzenia 5-60 °.FLIR iBros Kąt padania

Kąt zależny od emisyjności szkła

Obserwacje długodystansowe
Nie zawsze łatwe jest osiągnięcie odpowiedniego kąta widzenia podczas pomiaru set-up. Korzystanie ze statywu może stanowić rozwiązanie tego problemu w większości przypadków. W trudniejszych warunkach może być konieczne skorzystanie z mobilnych platform roboczych, a nawet latanie helikopterem nad panelami słonecznymi. W tych przypadkach, większa odległość od celu może być korzystna, ponieważ większa powierzchnia może być postrzegana w jednym przejściu.

FLIR iBros Solar panel w tęczy W celu zapewnienia wysokiej jakości obrazu termicznego do badań na dłuższych dystansach, powinna być stosowana kamera termowizyjna o rozdzielczości obrazu co najmniej 320 × 240 pikseli, a najlepiej 640 × 480 piksel.

Kamera powinna mieć również wymienny obiektyw, dzięki czemu operator może przejść do teleobiektywu podczas obserwacji na dużą odległość, taką jak z helikoptera. Wskazane jest jednak, aby korzystać tylko z teleobiektywów kamer termowizyjnych, które mają wysoką rozdzielczość obrazu. Niska rozdzielczość kamery termowizyjnej w pomiarach z dużej odległości przy użyciu teleobiektywu nie będzie w stanie odebrać małych szczegółów, które wskazują błędy cieplne paneli słonecznych. Aby nie wyciągnąć fałszywych wniosków należy trzymać kamerę termowizyjną pod odpowiednim kątem podczas inspekcji paneli słonecznych.

Patrząc na to z innej perspektywy

W większości przypadków, zainstalowane moduły fotowoltaiczne mogą być kontrolowane za pomocą kamery termowizyjnej z tylnej części modułu. Metoda ta minimalizuje przeszkadzające odbicia od słońca i chmur. Ponadto, temperatury uzyskane z tyłu mogą być większe, a pomiar jest wykonywany bezpośrednio, a nie przez powierzchnię szkła.

Warunki otoczenia i pomiarów
Podejmując inspekcje termograficzne, niebo powinno być jasne, ponieważ chmury zmniejszają natężenie promieniowania słonecznego, a także powodują zakłócenia przez odbicia. Informacyjne obrazy mogą być jednak uzyskane nawet przy zachmurzonym niebie, pod warunkiem, że używana kamera termowizyjna jest wystarczająco czuła. Pożądane są spokojne warunki, ponieważ każdy strumień powietrza na powierzchni modułu słonecznego powoduje konwekcyjne chłodzenie, a tym samym zmniejsza się gradient temperatury. Niższe temperatury powietrza dają wyższy potencjał kontrastu cieplnego. Dobrym rozwiązaniem jest przeprowadzanie inspekcji termograficznych w godzinach porannych.

Innym sposobem, zwiększenia kontrastu termicznego jest odłączenie komórki od obciążenia, w celu uniemożliwienia przepływu prądu. Następnie, obciążenie jest podłączone, a komórki obserwuje się w fazie nagrzewania.

W normalnych okolicznościach system powinien być sprawdzany w naturalnych warunkach pracy, to znaczy pod obciążeniem. W zależności od typu komórki i rodzaju uszkodzenia lub awarii, pomiary mocy bez obciążenia lub warunków zwarciowych mogą dostarczyć dodatkowych informacji.

FLIR iBros panele słoneczne termowizja
Pirwszy obraz termograficzny pokazuje duże obszary o podwyższonej temperaturze. Bez większej liczby informacji nie wiemy czy są to nieprawidłowości termiczne czy cień lub refleksje. Kolejny termogram ukazuje tył modułu solarnego, obraz wykonany kamerą FLIR P660. Wizualny obraz tej sytuacji jest pokazany na kolejnym zdjęciu.

Błędy pomiaru
Błędy pomiaru wynikają przede wszystkim ze złego ustawienia kamery oraz panujących warunków otoczenia i pomiarowych.

Typowe błędy pomiarowe są spowodowane:

• zbyt płytkim kątem widzenia

• zmianą natężenia promieniowania słonecznego w czasie (z powodu zmian na niebie)

• odbiciami (np, słońce, chmury, okoliczne budynki o większej wysokości, pomiary set-up)

• częściowym zacienieniem (np. z powodu otaczających budynków lub innych budowli).

Co można zobaczyć w obrazie termicznym
Jeśli części panelu słonecznego są cieplejsze niż w innych miejscach, ciepłe obszary pojawią się wyraźnie w obrazie termicznym. W zależności od kształtu i położenia tych obszarów gorące plamy mogą wskazywać na wiele różnych wad. Jeżeli cały moduł jest cieplejszy niż zwykle może to wskazywać na występujące problemy.

Zacienienia i pęknięcia w komórkach pojawiają się jako gorące plamy lub wielokątne plamy w obrazie termicznym. Wzrost temperatury z komórki lub części komórki wskazuje na uszkodzoną komórkę lub zacienienia. Obrazy termiczne uzyskane pod obciążeniem, bez obciążenia oraz w warunkach zwarcia powinny być porównywane. Porównanie obrazów termicznych przednich i tylnych powierzchni modułu może dać cenne informacje. Oczywiście, dla prawidłowej identyfikacji awarii, moduły wykazujące anomalie muszą być testowane elektrycznie i poddane oględzinom.

Wnioski
Kontrola termowizyjna systemów fotowoltaicznych pozwala szybko lokalizować ewentualne uszkodzenia na poziomie komórek i modułów, jak również wykrycie ewentualnych problemów wzajemnych połączeń elektrycznych. Kontrole są przeprowadzane w normalnych warunkach pracy i nie wymagają zamykania systemu.

Dla prawidłowych i informacyjnych obrazów termicznych, obowiązują określone zasady i procedury pomiarowe:

• powinna być stosowana kamera termowizyjna z odpowiednimi akcesoriami;

• wymagane jest natężenie promieniowania słonecznego (co najmniej 500 W / m2 ; preferowane powyżej 700 W / m2);

• kąt widzenia musi być w bezpiecznym przedziale ( 5 ° - 60 °);

• należy zapobiegać zacienieniom i odbiciom

Kamery termowizyjne są wykorzystywane przede wszystkim do zlokalizowania usterki. Klasyfikacja i ocena wykrytych nieprawidłowości wymaga dogłębnego zrozumienia techniki solarnej, znajomości systemu kontroli i dodatkowych pomiarów elektrycznych. Właściwa dokumentacja jest oczywiście koniecznością i powinna zawierać wszystkie warunki kontroli, dodatkowe pomiary i inne istotne informacje.

Kontrole z kamery termowizyjnej – począwszy od kontroli jakości w fazie instalacji, kolejne regularne kontrole - ułatwiają proste monitorowanie stanu systemu. Pomaga to w utrzymaniu funkcjonalności paneli słonecznych i przedłuża ich żywotność. Za pomocą kamer termowizyjnych do kontroli kolektorów słonecznych można zdecydowanie przyspieszyć zwrot z wykonanej inwestycji.

Typ błędu

Przykład

Pojawia się w obrazie termicznym jako

Wada produkcyjna

Zanieczyszczenia i pęcherze gazowe

"gorące punkty" lub "zimne punkty"

Pęknięcia w komórkach

Ogrzewanie komórek,

forma głównie wydłużona

Uszkodzenia

Pęknięcia

Ogrzewanie komórek, forma głównie wydłużona

Pęknięcia w komórkach

Część komórki wydaje się gorętsza

Tymczasowe zacienienie

skażenie

Gorące miejsca

Ptasie odchody

wilgotność

Uszkodzona dioda bypass

(powoduje zwarcia i

zmniejsza ochronę obwodu)

N.a.

"wzorzec patchwork"

Wadliwe połączenia

Moduł lub ciąg modułów nie podłączony

Moduł lub ciąg modułów jest stale cieplejsze

Tabela 1: Lista typowych błędów modułu (Źródło: ZAE Bayern eV "Überprüfung der qualität von Photovoltaik- Modulen Infrarot-Aufnahmen mittels" ["Badania jakości w modułów fotowoltaicznych przy użyciu obrazowania w podczerwieni"], 2007)

 

 

Nowa funkcjonalność wbudowana w kamery termowizyjne FLIR Systems - UltraMaX!

Ta unikalna technika przetwarzania obrazu pozwala wygenerować termogram posiadający 4 x więcej pikseli oraz około 50% mniejsze szumy.
Dzieki temu pomiar temperatury przy zbliżeniach jest dokładniejszy niż kiedykolwiek:

 

 

UltraMax-zoom iBros

 

UltraMax-Dokladnosc iBros technic

 

 

Po więcej informacji zapytaj:
iBros technic dystrybutor FLIR Systems
tel: +48 12 376 70 51

 

 

 

Dzięki FLIR ONE Pro możesz znajdować normalnie niewidoczne problemy szybciej niż kiedykolwiek wcześniej. We FLIR ONE Pro połączyliśmy detektor termiczny o wyższej rozdzielczości, który mierzy temperaturę maks. 400°C, z rozbudowanymi narzędziami pomiarowymi i funkcją generowania raportów. Niezależnie jak ciężko pracujesz, ta kamera dotrzyma ci kroku.

 

 

 

 

Innowacyjna technologia przetwarzania obrazu VividIR™ uwydatnia szczegóły i daje klientom do ręki dowód, że ich problemy zostały rozwiązane tak, jak trzeba, bez zbędnej zwłoki. Zmodernizowaliśmy konstrukcję, dodając rewolucyjne regulowane złącze OneFit™ do podłączania telefonu – bez potrzeby wyciągania go z etui. Ulepszona aplikacja FLIR ONE umożliwia wykonywanie wielu pomiarów temperatury i kontrolę wielu obszarów jednocześnie. Obraz można też transmitować i wyświetlać zdalnie na smartwatchu.

 

Z FLIR ONE Pro skorzysta każdy specjalista, niezależnie od branży – elektrycznej, ogrzewania, wentylacji, klimatyzacji czy lokalizacji wycieków. Tę kamerę po prostu trzeba mieć.

FLIR ONE PRO jpg4

 

 

Opis

PRZETWARZANIE OBRAZU VividTR

Widzisz problem  i go rozwiązujesz. Przenośne urządzenie termowizyjne generujące najwyraźniejszy obraz umożliwia szybkie i precyzyjne wykrywanie problemów oraz dokumentowanie napraw dla klienta

• Najbardziej zaawansowana technologia wzbogacania obrazu wykrywa subtelne róźnice temperatury, które pozwalają szybko lokalizować problemy
• Kamera FLIR ONE Pro jest wyposażona w mikrodetektor termowizyjny o najwyższej rozdzielczości 160 x 120. Maksymalna mierzona temperatura to 400°C
• FLIR MSX® nakłada krawędzie rejestrowane w świetle widzialnym za pomocą kamery HD 1440 x 1080 na obraz termowizyjny. Tak powstały obraz jest o wiele ostrzejszy i czytelniejszy

 

 

ZŁĄCZE OneFit

Nie musisz już żonglować futerałem. Regulowane złącze oznacza, że nie trzeba wybierać między termowizją i chowaniem urządzenia w ochronnym etui

• Możliwość regulacji długości złącza USB-C i Lightning w zakresie dodatkowych 4 mm
• Odwracalne złącza dla systemów Android i iOS
• Smartfon jest jednocześnie bezpieczny w etui i połączony z FLIR ONE

 

 

APLIKACJA DO WYMAGAJĄCYCH ZADAŃ

Urządzenie dla specjalistów - zaawansowane funkcje potrzebne w pracy pozwalają na rozwiązywanie problemów w profesjonalny sposób

• Wielokrotne pomiary punktowe i kontrola wielu obszarów w czasie rzeczywistym
• Sprytne rozwiązania i porady ułatwiające pracę w aplikacji FLIR ONE plus profesjonalne raportowanie dzięki narzędziom FLIR Tools
• Możliwość obserwacji zza rogu i w trudno dostępnych miejscach dzięki połączeniu ze smartwatchem Apple Watch lub Android

 

 

Specyfikacja

     SPECYFIKACJA TECHNICZNA

Ogólne

FLIR ONE Pro

Certyfikaty

MFI (wersja iOS), RoHS, CE/FCC, CEC-BC, EN61233

Temperatura podczas pracy

Od 0°C do 35°C (od 32°F do 95°F), ładowanie akumulatora od 0°C do 30 °C (od 32°F do 86°F)

Temperatura składowania

Od -20°C do 60°C (od -4°F do 140°F)

Wymiary

68mm S x 34mm W x 14mm G (2,7'' x 1,3'' x 0,6'')

Masa

36,5 g

Odporność na wstrząsy mechaniczne

Upadek z wysokości 1,8 m (5,9 ft)

Wideo

Kamera światła widzialnego i termowizyjna z technologią MSX

Detektor termowizyjny

Rozmiar piksela 12μm, zakres widmowy 8-14μm

Rozdzielczość obrazu termowizyjnego

160 x 120

Rozdzielczość obrazu widzialnego

1440 x 1080

Poziome/ pionowe pole widzenia

55° ±1° / 43° ±1°

Częstotliwość klatek

8,7 Hz

Ostrość obrazu

Stała 15 cm - Nieskończoność

Radiometria

Zakres mierzonych temperatur

Od -20°C do 400° (od -4°F do 752°F)

Dokładność

±3°C (5,4°F) lub ±5%, typowy procent różnicy między temperaturą otoczenia i mierzoną. Ma zastosowanie 60s po uruchomieniu, gdy temperatura urządzenia jest w zakresie 15°C – 35°C (59°F – 95°F), a mierzona -5°C – 120°C (41°F - 248°F)

Czułość termiczna (NETD)

150 mK

Ustawienia emisyjności

Mat: 95%, Półmat: 80%, Półpołysk: 60%, Połysk: 30% Odbita temperatura tła to 22°C (72°F)

Migawka

Automatyczna / Ręczna

Zasilanie

Czas pracy akumulatora

Około 1h

Czas ładowania akumulatora

40 min

Złącza

Złącze wideo

Złącze męskie Lightning (iOS), Złącze męskie USB-C (Android)

Ładowanie

Gniazdo żeńskie USB-C (5V/1A)

Aplikacja

Wyświetlanie/ rejestrowanie sekwencji wideo i zdjęć

Zapis w rozdzielczości 1440 x 1080

Formaty plików

Zdjęcia – pomiarowy jpeg

Wideo – MPEG-4 [format pliku MOV (iOS), MP4 (Android)]

Tryby rejestracji

Wideo, Zdjęcia, Poklatkowe

Palety

Szara (biała gorąca), Najgorętsza, Najzimniejsza, Żelazo, Tęcza, Kontrast, Arktyczna, Lawa i Koło.

Pirometr

Wył. / °C / °F. Podziałka 0,1°C / 0,1°F

Ustawienia odległości MSX

0,3 m - Nieskończoność

Monitorowanie naładowania akumulatora

Od 0 do 100%

 

 

Zastosowanie

FLIR ONE PRO jpg1

INSPEKCJA DOMOWA I BUDOWLANA

Niezależnie od tego czy jesteś wykonawcą robót budowlanych, czy agentem nieruchomości, FLIR ONE Pro dostarczy Tobie i Twoim klientom informacji potrzebnych do podejmowania ważnych decyzji dzięki poprawie obrazu VividIR™ firmy FLIR. Zobacz różnice temperatury, które towarzyszą brakującym, uszkodzonym lub niewystarczającym izolacjom, przeciekom powietrza w budynku, wnikaniu wilgoci lub uszkodzeniom. Może to pomóc szybko znaleźć źródła utraty energii, wadliwe elementy, a także pokazać klientom gdzie leży problem.

 

 

FLIR ONE PRO jpg2

 HVAC i SYSTEMY HYDRAULICZNE

Jeśli pracujesz w branży systemów HVAC lub systemów hydraulicznych, potrzebujesz jednego prostego narzędzia, które pomoże ci szybko znaleźć problemy i zapewni łatwe do analizy zdjęcia, które pokażą Twoim klientom dokłanie to, czym są problemy... i udowodnią, że je naprawiłeś. Niezależnie od tego, czy chodzi o wyciek powietrza, wyciek wody, czy zwarcie elektryczne, FLIR ONE Pro może pokazać Ci miejsce problemu. 

 

 

FLIR ONE PRO jpg3

 PROBLEMY ELEKTRYCZNE

Wiele typowych problemów elektrycznych wytwarza nadmiar ciepła. Dzięki temu znalezienie potencjalnych problemów elektrycznych jest szybkie i łatwe przy użyciu FLIR ONE Pro. Ponadto można uzyskać dokładny, bezdotykowy pomiar temperatury, zachowując bezpieczną odległość od urządzeń pod napięciem. FLIR ONE Pro daje możliwość uzyskania informacji niezbędnych do dokładnego zdiagnozowania problemu. 

 

  

 

pdf icona h60Zobacz kartę techniczną FLIR ONE Pro

 

Inspektorzy budowlani używają kamer termowizyjnych FLIR na audytach energetycznych od wielu lat. W ostatnich latach weszły na rynek coraz bardziej przystępne cenowo modele. Jednym z pracowników budowlanych, który trafił na okazję jest Björn Blomgren z Nybro, (Szwecja) . "Kiedy kupiłem kamerę bałem się, że nie będę go używać na tyle często, by inwestycja okazała się opłacalna, ale wkrótce stało jasne, że to nie był problem. Znalazłem kilka sposobów na wykorzystanie kamery termowizyjnej FLIR. To naprawdę bardzo wszechstronne narzędzie. "

"Mam już pewne doświadczenie z kamerami termowizyjnymi, bo w przeszłości pracowałem jako przemysłowy konserwator, ale kamery termowizyjne, które wtedy używałem były duże, niewygodne i zbyt drogie dla specjalisty budowlanego", Blomgren pamięta. "Dlatego nigdy nie kupiłem kamery termowizyjnej, choć wiedziałem, że będzie to wielki atut."

Ale kilka lat temu Blomgren usłyszał o kamerze termowizyjnej FLIR i5, przystępnej wersji podstawowej, która mieściła się w jego budżecie. "Nie było żadnego powodu, po prostu zakup kamery termowizyjnej był dla mnie. Jestem bardzo zadowolony, że ją kupiłem, ponieważ jest to bardzo przydatne i wszechstronne narzędzie. "

FLIR iBros elektryczność w termowizji

 

 

O rozdzielczości 80x80 pikseli i czułością termiczną 0,10 ° C i5 FLIR zapewnia profesjonalistom kamerę termowizyjną, która jest odpowiednia dla wielu zastosowań. Wraz ze swoimi podobnymi odpowiednikami, takimi jak: i3 oraz i7 jest jedną z najmniejszych, najlżejszych i najbardziej przystępnych kamer termowizyjnych na rynku. Zaprojektowana tak, by była łatwa w użyciu, dodatkowo nie wymaga szkolenia podstawowego, umożliwia uzyskanie obrazów termicznych, które natychmiast dają potrzebne informacje.

 

To uniwersalne narzędzie może być wykorzystywane do wielu różnych zastosowań, w tym do badań systemu HVAC oraz do kontroli izolacji, wentylacji, czy szaf elektrycznych. 

 

 

Blomgren używa FLIR i5 kamery termowizyjnej głównie do inspekcji budowlanych. "W Szwecji jest to wymagane przez prawo do dostarczenia dokumentacji zużycia energii w domu, zanim dom zostanie sprzedany nowemu właścicielowi. Nie musi to być audyt energetyczny, więc w niektórych przypadkach jest to po prostu lista liczb, które pokazują zużycie energii przez poprzedniego właściciela. Ale myślę, że jest to dobry punkt w sprzedaży domu, jeśli właściwy audyt energetyczny jest również uwzględniony. Dlatego rozpoczęto oferowanie tej usługi. I najwyraźniej nie jestem jedynym, który uważa, że taki audyt energetyczny byłby dobrym punktem sprzedaży dla wielu właścicieli domów, którzy chcą sprzedać swój dom.”

Według Blomgren usługi audytu energetycznego dla sprzedawców domu są także dobrą promocją. "Jeśli będą dostarczane dobre usługi z dokładnych i wiarygodnych wyników, to zarówno kupujący jak i sprzedający dom będzie skłonny się skontaktować, jeśli nie jest to kwestia związana z budynkiem. Ale to tylko wtedy, gdy dostarczana usługa jest dobra. Jeśli dom ma wady, które nie zostałyby wykryte podczas mojego przeglądu to nie jest to dobre dla mojej reputacji, więc zawsze upewniam się, że każde badanie jest dokładne i prawidłowe. "FLIR iBros połączenie przegrzane szafa elektryczna PL

FLIR iBros połączenie przegrzane szafa elektryczna 

Kontrole w budownictwie są przeważnie wykonane w zimie, ponieważ jest wymagana wystarczająca różnica temperatur pomiędzy wewnętrzną i zewnętrzną temperaturą, aby móc rozpoznać awarie izolacyjne. Dlatego Blomgren obawia się, że kamera FLIR i5 będzie leżała bezczynnie przez połowę roku. "Jest wiele różnych zastosowań, do których można użyć tego narzędzia. Za pomocą tego sprzętu można zrobić o wiele więcej niż same kontrole. "

Najbardziej oczywiste zastosowanie kamery dla firmy, która specjalizuje się w ogrzewaniu, wentylacji i klimatyzacji (HVAC) jest kontrola systemu HVAC. "Z każdego systemu HVAC instaluje się i wykonuje badania termograficzne przed dostawą, aby potwierdzić, że wszystko działa poprawnie. Ten raport jest wielką zaletą i można go pokazać klientowi. "

 

 

 

 

Sprawdzanie poprawności skarg i znalezienie usterki

Czasami pojawiają się skargi. "Z kamery termowizyjnej można od razu zobaczyć, czy skarga jest słuszna. Ostatnim przykładem takiego wykorzystania kamery termowizyjnej FLIR i5 był budynek uniwersytecki w pobliżu. " System HVAC został zainstalowany przez inną firmę, ale były skargi na temperature w pomieszczeniach, że jest zbyt ciepło lub zbyt zimno, więc zadzwonił do mnie pracownik uniwersytetu o pomoc.

 

Wykonałem termograficzny przegląd pomieszczeń i uważam, że były problemy z cyrkulacją powietrza, powodując pewne obszary ciepła, podczas gdy inne pozostały zimne. Na podstawie moich badań problem mógł być rozwiązany. "Innym bardzo oczywistym przykładem użycia kamery termowizyjnej jest ogrzewanie podłogowe. "Jeśli jest wyciek w ogrzewaniu podłogowym jest to bardzo łatwe do znalezienia z użyciem kamery termowizyjnej, bez konieczności otwierania całej podłogi. To nie tylko oszczędność czasu i wysiłku, ale również pieniędzy. "Ale nie tylko przecieki z ogrzewania podłogowyego można znaleźć przy pomocy kamery termowizyjnej i5 FLIR. "Zdarzały się również przypadki, w których hydraulika zaczęła wyciekać, powodując uszkodzenia wody. Z kamery termowizyjnej udało mi się znaleźć przeciek szybciej i bez otwarcia ściany. Pozwoliło to hydraulikowi, na dokładną koordynację naprawy. "

Agregaty chłodnicze

Hammarstedts jest wiodącą firmą usługową, w południowo-wschodniej części Szwecji dostarczającą innowacyjne rozwiązania w ramach ogrzewania, wentylacji, energooszczędnych procesów automatyzacji. Koledzy Blomgren mogą dostarczać również kompletne rozwiązania dla magazynów chłodniczych i chłodnie do supermarketów. Jeśli mają kłopoty z instalacją koledzy Blomgren często proszą go o pomoc. "Za pomocą kamery termowizyjnej FLIR i5 można szybko rozpoznać, czy istnieje problem z izolacją. To jest coś, co można robić przez cały rok, ponieważ zazwyczaj nie ma dużej różnicy temperatur pomiędzy wnętrzem jednostki chłodzącej i temperaturą w pomieszczeniu zewnętrznym jednostki chłodzącej. "

W sumie Blomgren jest bardzo zadowolony ze swojej kamery termowizyjnej FLIR i5 . "Kamera termowizyjna I5 na pewno ma odpowiednią jakość obrazu do takich zastosowań. Używam tego aparatu tak często, że rozważam zakup nowej kamery termowizyjnej z FLIR Systems. Być może FLIR serii E lub kamera termowizyjna serii B, nie jestem jeszcze zdecydowany. Ale na pewno to będzie kamera FLIR. To jest pewne. Żaden inny dostawca nie zapewnia takiej samej konstrukcji przyjaznej dla użytkownika, wydajności i termowizji oraz przystępnych cen, które są oferowane przez firmę FLIR Systems. "FLIR iBros kamera i5

Blomgren wykorzystuje oprogramowanie FLIR QuickReport do analizy obrazów termicznych oraz generowania raportów dla swoich klientów.

 

DRON FLIR DJI TERMOWIZYJNY W IBROS

DRONY TERMOWIZYJNE zestawy DJI z kamerą termowizyjną FLIR

Zestaw umożliwiający szybką diagnostykę dużych połaci dachowych, budynków, powierzchni położonych w trudno dostepnych miejscach. Zapomnij o konieczności wchodzenia i przesiadywania na drabinie. Dzieki wykorzystaniu drona z kamera termowizyjną FLIR możesz diagnozować usterki szybciej, bardziej komfortowo i o wiele bezpieczniej.

Połączenie stabilności lotu, technologii gimbal, zdalnej łączności umozliwiającej przesyłanie obrazów na odleglość oraz sprawdzonego drona DJI Inspire 1 z zaawansowanymi technologicznie możliwościami obrazowania podczerwonego FLIR, zaowocowało stworzeniem kompleksowego rozwiązania do diagnostyki.

Główne zalety:

  • inspekcja dachów - w ciągu minuty zdiagnozuj problemy lub uszkodzenia izolacji, sprawdź postępy prac naprawczych
  • inspekcja paneli fotowoltaicznych - ultra szybka diagnostyka dzięki możliwości "przelotu" nad panelami
  • inspekcja instalacji przemysłowych
  • kontrola bezpieczeństwa terenu
  • wykorzystaj oprogramowanie FLIR Tools i stwórz obraz panoramiczny
  • nagraj wideo (MP4) lub zapisz zdjęcia w formacie JPEG

Kliknij inne zakładki.. Specyfikacje, FILMY ... po wiecej informacji.

Link do strony FLIR Systems z opisem rozwiązania:

http://www.flir.com/suas/aerial-thermal-imaging-kits/

FLIR Vue Pro R FLIRTools 

 

Właściwości

 

Zestaw "Domowy"

Zestaw "Komercyjny"

Kamera termowizyjna

FLIR Zenmuse XT: 336 x 256,

obiektyw 6.8 mm (45o x 35o)

FLIR Zenmuse XT: 640 x 512,

obiektyw 13 mm (45o x 37o)

Jednostka latająca

DJI Inspire 1 V2.0

DJI Inspire 1 V2.0

Kamera standardowa (

Zenmuse X3 (rozdzielczość 4K)

Zenmuse X3 (rozdzielczość 4K)

Bateria 4,500mA

2

2

Kontroler(y)

1

2

Wyświetlacz Apple iPad Mini 4 64GB WiFi

1

1

Osłona wyświetlacza

1

1

Walizka transportowa

1

1

FLIR Tools+

1

1

FLIR Aerial Drone kits whatsinthebox

 

 

Specyfikacje

 FLIR Vue Pro R iBros

Specyfikacja kamery termowizyjnej
Typ sensora Niechłodzony mikrobolometr VOx 
Rozdzielczość video 640 × 512 336 × 256
Piksel     17 μm
Odświeżanie (EU) poniżej 9hz (7.5 Hz NTSC; 8.3 Hz PAL)
Czułość (NEdT) poniżej 50 mK przy f/1.0
Format foto JPEG (8 bit) / TIFF (14 bit)
Format video MP4
Zoom cyfrowy 2x, 4x, 8x 2x, 4x
Opcje obiektywu 13mm, 19mm    6.8mm
Zasięg temperatur (wysokie gainy)    -25° do 135°C -25° to 100°C
Zasięg temperatur (niskie gainy) -40° to 550°C -40° to 550°C
GIMBAL (stabilizator)
Zasięg wibracji ±0.03°
Mocowanie odłączalny  
Zasięg kontroli Tilt:+35° do -90°; Pan:±320°; Roll:±15°
Zasięg mechaniczny Tilt:+45° do -135° Pan:±320° Roll:±45°
Maks. prędkość kontroli 120°/s
ŚRODOWISKO PRACY
Temperatura pracy -10° do 40 ℃
Szok termiczny 5 ℃/min
Wilgotność 5% do 95%
Model Zenmuse XT
Wymiary 103 mm x 74 mm x 102 mm
Waga 270 g
OBRÓBKA I WYŚWIETLANIE OBRAZU
NTSC/PAL tak
Optymalizacja obrazu tak
Cyfrowe wzmocnienie detali (DDE) tak
Kontrola polaryzacji (black hot/white hot) tak
Palety barw tak
Zoom cyfrowy 640 × 512: 2x, 4x, 8x / 336 × 256: 2x, 4x

 

 
Modele obiektywów 6.8 mm 13 mm 19 mm
17μ 640×512 FoV   f/1.25 f/1.25
iFoV 45° x 37° 32° x 26°
  1.308 mr 0.895 mr
17μ 336×256 FoV f/1.4 f/1.25 f/1.25
iFoV 49.1° x 37.4° 25° x 19° 17° x 13°
  2.519 mr 1.308 mr 0.895 mr
Min. zasięg ostrości 2.3 cm 7.6 cm 15.3 cm
Odległość hiperfokalna 1.2 m 4.4 m 9.5 m
Hiperfokalna głębia ostrości     0.6 m 2.2 m 4.8 m

 

Aplikacje

Przykładowe zdjęcia wykonane z drona:

FLIR IR inspekcja dachow iBros FLIR IR inspekcja dachow iBros
FLIR IR nieszczelne okna iBros FLIR IR nieszczelne okna iBros
FLIR IR nieszczelny dach iBros FLIR IR nieszczelny dach iBros
FLIR IR pozar iBros FLIR IR pozar iBros
FLIR IR SAR iBros FLIR IR SAR iBros

FILMY DRONY FLIR

Film pokazujący drony DJI z wykorzystaniem termowizji FLIR Systems

Drony DJI z termowizją FLIR Systems do ochrony domów

 

 

W dniach 27-28 lutego 2018 roku firma iBros technic weźmie udział w 16 edycji targów Forum Wentylacja - Salon Klimatyzacja 2018.

 

Wszystkie zainteresowane osoby zapraszamy do odwiedzin stoiska nr 97 firmy iBros technic. Podczas targów możliwe będzie obejrzenie i testowanie najnowszych kamer termowizyjnych marki FLIR Systems, balometru i mierników do regulacji instalacji wentylacyjnych TSI Incorporated, jak również innych, wybranych narzędzi kontrolno-pomiarowych dostępnych w ofercie iBros technic (w tym kamery inspekcyjne, pirometry termowizyjne, wilgotnościomierze).

 

Bedzie nam miło spotkać się z Państwem i porozmawiać chociaż przez chwilę. Zapraszamy.

 

 

Targi Forum Wentylacja - Salon Klimatyzacja to największe spotkanie specjalistów branży wentylacyjnej, klimatyzacyjnej i chłodniczej. 

 

Miejsce targów:  

Centrum Targowo-Kongresowe MT Polska

ul. Marsa 56c,  04-242 Warszawa

Nr stoiska iBros technic: 97

 

Godziny:

27 lutego 2018: godz. 09.00 - 17.00

28 lutego 2018: godz. 09.00 - 16.00

 

Baner iBros

 

Kamera inspekcyjna - wideoskop

Właściwości

Nowa kamera termowizyjna FLIR serii E BX
Najszybszy sposób, aby uchwycić, analizować i udostępnić obrazy termiczne. Najlepsza seria w tej klasie.

FLIR E60bx - 76 800 pikseli
Rozdzielczość - 320 x 240
MSX - obrazowanie multispektralne
Alarmy: punktu rosy, izolacji
Ręczne ustawienie ostrości
Obiektywy do dalszej rozbudowy
Odporność na upadek z 2 m

Unikalna gwarancja FLIR Systems: 2-5-10


Odswieżona seria kamer termowizyjnych E xx, łączy w sobie wysoka jakość wykonania z łatwością obsługi. Seria E jest zaprojektowana do diagnozowania problemów instalacji elekrtycznych, budowlanych łatwiej, bardziej wydajniej i skuteczniej. Pomagają w tym następujace wlaściwości: rozdzielczość 320 × 240 przy 60 Hz do przechwytywania w czasie rzeczywistym, dzięki czemu nic nie umknie, jasny ekran dotykowy z dużą ilością narzędzi, które pomogą Ci precyzyjnie dostroić szybko analizować obrazy, Wi-Fi do transferu obrazów i danych do urządzenia mobilnego w celu dalszej analizy, raportowania i natychmiastowego dzielenia się z klientami potrzebującymi detekcji strat energii, pomocy w diagnozie instalacji HVAC, problemów z instalacjami elektrycznymi. Zbuduj swój biznes i swoją wiarygodność w oparciu o kamerę termowizyjna z serii E xx. W ofercie autoruzowanego dystrybutora amerykańskiej firmy FLIR Systems - iBros technic.

Specyfikacje

 

Specyfikacja techniczna Kamery termowizyjnej E60/E60bx:

FLIR E60 FLIR E60bx
Cena
Dokładność ±2% lub 2°C ±2% lub 2°C
Rozdzielczość detektora 76800 (320 x 240) 76800 (320 x 240)
Czułość termiczna <0.045°C <0.045°C
Zakres pomiaru temperatury -20°C do 650°C (-4°F to 1,202°F) -20°C do 120°C (-4°F to 248°F)
Wielkość wyświetlacza 3.5”/Panoramiczny 3.5”/Panoramiczny
Wizjer Nie Nie
Tryby pomiarowe 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T 5 trybów: 3 punkty; 3 pola (Min/Max); Izoterma (powyż./poniż.); Auto punkt ciepły/zimny; Delta T
Punkty pomiarowe 3 przesuwalne 3 przesuwalne
Częstotliwość odświeżania 60 Hz 60 Hz
FOV 25° × 19° 25° × 19°
FOV taki jak w obiektywie Nie Nie
Opcjonalne obiektywy 2: 15° Tele, 45° Szer. 2: 15° Tele, 45° Szer.
Ustawienie ostrości Manualne Manualne
Ciągły auto-fokus Nie Nie
Minimalna odległość ostrzenia 0.4 m (1.31 ft.) 0.4 m (1.31 ft.)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak Tak
Palety 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami) 12: Arktyczna, Szara, Żelazo, Lawa, Tęcza, Tęcza HC (oraz wszystkie palety z odwróconymi kolorami)
Oprogramowanie FLIR Tools Tak Tak
Raport w kamerze Nie Nie
Czas pracy na baterii >4 godzin >4 godzin
Kamera wbudowana 3.1 MP 3.1 MP
Wbudowane podświetlenie LED Tak Tak
Ekran dotykowy Tak Tak
Zoom cyfrowy
Alarm izolacji Nie Tak
Alarm punktu rosy Nie Tak
Połączenie MeterLink® Tak Tak
Wskaźnik laserowy Tak Tak
Indykator wskaźnika na obrazie IR Tak Tak
Kompas Nie Nie
GPS Nie Nie
Korekcja dla okna wziernikowego IR Window Tak Tak
Delta T Tak Tak
Obraz w obrazie Dostosowanie PIP Dostosowanie PIP
Fuzja termiczna Nie Nie
MSX™ Obrazowanie multispektralne Tak Tak
Szkic na ekranie Nie Nie
Szkic na zdjęciu IR Nie Nie
Notatki tekstowe/głosowe Tak Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak Tak
Streaming video Tak Tak
Zdalne sterowanie FLIR App Remote Control Nie Nie
Odporność na upadek (2 metry/6.6 stóp) Tak Tak
Waga (włącznie z bateriami) 0.825 kg (1.82 lbs) 0.825 kg (1.82 lbs)

 

Zastosowanie:

  • Wykonywanie pomiarów instalacji energetycznych, ciepłowniczych, chłodniczych
  • Okresowe przeglądy związane z utrzymaniem ruchu w obiekcie, fabryce
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji, na produkcji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

Zalety:

  • łatwa obsługa
  • lekka i przenośna
  • odporna na uszkodzenia
  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 865 g
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

 

Istnieje możliwość podłączenia do kamery termowizyjnej E60 mierników cęgowych marki FLIR Systems. Zobacz, które mierniki współpracują z FLIR E60:

http://termowizja.ibros.pl/index.php/produkty-flir-w-ofercie-ibros/mierniki-flir-w-ibros-technic/dla-budownictwa/item/133-flir-cm78-1000a-miernik-z-termometrem-na-podczerwien

http://termowizja.ibros.pl/index.php/produkty-flir-w-ofercie-ibros/mierniki-flir-w-ibros-technic/dla-budownictwa/item/134-miernik-cegowy-flir-cm83-600a

Zrzuty ekranów

Przykładowe zrzuty ekranów

 


Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej E xx:

eseries1 eseries1
eseries2 eseries2
eseries4 eseries4
eseries5 eseries5
meterlink meterlink

 

 

©iBros. Wszelkie prawa zastrzeżone.

Top Desktop version