FLIR & iBros technic bezpośredni dystrybutor urządzeń omiarowych - kamery termowizyjne FLIR Systems w Polsce

Switch to desktop Register Login

FLIR C3 z wifi

Kompaktowa, w pełni funkcjonalna kamera termowizyjna z komunikacją Wi-Fi

Właściwości

FLIR C3 - 4 800 pikseli
Rozdzielczość - 80 x 60
Pomiary: -10°C to +150°C

Komunikacja: WiFi (umożliwia połaczeie z urządzeniami mobilnymi z FlirTools Mobile)

Wyjatkowa gwarancja FLIR Systems: 2 lata na kamerę i 10 lat na detektor

FLIR C3

Główne zalety C3:

  • MSX - zaawansowana technologia FLIR pozwala połączyć obraz podczerwony z obrazem widzialnym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Obiektyw szerokokątny - specjalnie przystosowany obiektyw dzieki któremu C3 moze być wykorzystywana w budownictwie
  • Automatyczne wykrywanie najwyższej/najniższej temperatury
  • Komunikacja WiFi - mozliwość przesłania zrobionych zdjęć do telefonu, tabletu
  • 3" dodtykowy ekran - dotykowy ekran pozwala na łatwiejszą i szybszą obsługę kamery
  • Nagrywanie wideo - zaawansowana opcja przesyłania obrazu wideo, do tej pory zarezerwowana dla droższych kamer termowizyjnych.
  • Kompaktowa budowa - lekka, funkcjonalan budowa. C2 można zawiesić na dostarczonej w zestawie smyczy lub schować w kieszeni
  • Rzeczywiste pomiary - kamera pozwala na zapis radiometrycznych obrazów w formacie JPG. Zrób zdjęcie by potem przeanalizować je na komputerze w domu!

 

Specyfikacje

Specyfikacja techniczna Kamery termowizyjnej C3:

 pdf

Specyfikacja techniczna kamery termowizyjnej FLIR C3

 

 

Rozdzielczość detektora 80 × 60 (4 800 pikseli)
Czułość ‹ 0.10°C
FOV 41° x 31°
Minimalna odległość ostrzenia IR: 0.15 m (0.49 ft.)
MSX®: 1.0 m (3.3 ft.)
Częstotliwość odświeżania 9 Hz
Zakres spektralny 7.5 - 14 µm
Wielkość wyświetlacza 3” (320 x 240 pikseli)
Auto-orientacja Tak
Ekran dotykowy Tak, pojemnościowy
Tryby obrazowania
Obraz podczerwony Tak
Obraz widziany Tak
MSX® Tak
Obraz w obrazie Tak
Galeria Tak
Pomiary
Zakres pomiaru temperatury -10°C to +150°C (14 to 302°F)
Dokładność ±2°C lub 2%, (w zależności która wartość jest większa)
Analiza obrazu
Pomiar w punkcie pomiar lub brak
Obszar Kwadrat z temperaturą max lub min
Korekcja emisyjności Tak; matowa/półmatowa/półbłyszcząca + nastawiana przez użytkownika
Korekcja pomiarów Emisyjność, Temperatura odbita
Ustawienia
Palety Żelazo, Tęcza, Tęcza HC, Szara
Pamięć Wbudowana pamięć, zapis co najmniej 500 zdjęć
Format zapisu JPEG, 14 bitowe dane pomiarowe
Streaming wideo
Obraz IR nieradiometryczny Tak
Obraz światła widzianego Tak
Kamera cyfrowa
Rozdzielczość 640 x 480 pikseli
Ustawienia ostrości Stałe
Dodatkowe informacje
Interfejsy komunikacyjne Wi-Fi, USB
Gniazdo USB USB Micro-B: Możliwość przesyłu danych z i do komputera, urządzeń mobilnych
Bateria polimerowa bateria litowo-jonowa
Czas pracy na baterii 2 godziny
Ładowanie ładowanie w kamerze
Czas ładowania 1,5 godziny
Zasilanie zewnętrzne Zasilacz AC, 90-260 VAC wejście 5 V wyjście do kamery
Temperatura pracy -10°C do +50°C (14 to 122°F)
Temperatura przechowywania -40°C do +70°C (-40 to 158°F)
Waga 0.13 kg (0.29 lb.)
Rozmiar (Dł. x Szer. x Wys.) 125 x 80 x 24 mm (4.9 x 3.1 x 0.94 in.)
Zawartość zestawu kamera termowizyjna, smycz, pokrowiec, zasilacz/ładowarka, mocowanie statywu, kabel USB, dokumentacja w wersji drukowanej

Zastosowanie kamer C3:

  • Wykonywanie pomiarów testowych instalacji elektrycznych
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi

Zrzuty ekranów

Przykładowe zrzuty ekranów z kamery FLIR C3 (kliknij aby powiększyć!)

 

Cold Spot Air Infiltration C3 Cold Spot Air Infiltration C3
ColdAirInsideEnclosedCeiling ColdAirInsideEnclosedCeiling
ColdAirLeak spot ColdAirLeak spot
Hot Spot Active Fuse C3 Hot Spot Active Fuse C3
HotOverloadedDimmerSwitch HotOverloadedDimmerSwitch
NoInsulationInOutsideWall NoInsulationInOutsideWall

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej C3:

[Zapraszamy szczególnie do oglądnięcia filmu - zobacz w zakładce obok]

Cold Spot Air Infiltration C3 Cold Spot Air Infiltration C3
ColdAirInsideEnclosedCeiling ColdAirInsideEnclosedCeiling
ColdAirLeak spot ColdAirLeak spot
Hot Spot Active Fuse C3 Hot Spot Active Fuse C3
HotOverloadedDimmerSwitch HotOverloadedDimmerSwitch
NoInsulationInOutsideWall NoInsulationInOutsideWall

FILM Flir C3

Film prezentuje wstępnie możliwosci nowej kompaktowej kamery termowizyjnej FLIR model "C3"

 

 

Przemysłowy pirometr termowizyjny do wysokich temperatur

FLIR TG297 łączy w jednym urządzeniu dokładny pomiar oraz możliwość obrazowania temperatur aż do 1030°C. Dzięki temu można zarówno zobaczyć, jak i zmierzyć źródło typowych problemów związanych z układami elektrycznymi i mechanicznymi, diagnozować awarie i weryfikować procesy produkcyjne. FLIR TG297 wypoażony jest w technologię MSX® (Multi-Spectral Dynamic Imaging), która poprawia przejrzystość obrazu poprzez wytłaczanie szczegółów z obrazu widzialnego na obrazie termowizyjnym. Możliwość zapisu obrazów pozwala zapewnić bezpieczeństwo działania i maksymalną wydajność systemów. Dzięki prostemu interfejsowi użytkownika, łączności Bluetooth®, pamięci do 50 000 zdjęć i akumulatorowi litowo-jonowemu FLIR TG297 jest gotowy do pracy od razu po wyjęciu z pudełka.

 

 

 pdf

 

    >> Karta techniczna FLIR TG297

 

 

Właściwości

 

SZYBKA IDENTYFIKACJA PROBLEMÓW

Dołącz  FLIR TG297 do swojego zestawu narzędzi

  • Poczuj różnicę, jaką możesz uzyskać dzięki urządzeniu do obrazowania IR o rozdzielczości 160 × 120 pikseli (19200 pikseli)
  • Filtr wysokotemperaturowy umożliwia pomiar i wyświetlanie temperatur nawet do 1030°C
  • Pracuj z bezpiecznej odległości podczas badania obiektów o wysokiej temperaturze dzięki współczynnikowi punktowemu 30: 1
  • Zidentyfikuj dokładny obszar, który mierzysz za pomocą wskaźnika laserowego

 

WYRAZISTE OBRAZY DO ŁATWEJ INTERPRETACJI

Zobacz szczegóły potrzebne do rozwiązywania problemów i oceniania ich wagi

  • Szybciej diagnozuj problemy dzięki opatentowanemu przez FLIR ulepszeniu obrazu MSX
  • Wyświetlaj i rejestruj obrazy termiczne lub wizualne z odczytami temperatury
  • Porównuj zapisane obrazy przed i po, aby zdiagnozować problem i wykonać naprawy
  • Oglądaj obrazy termiczne w preferowanej palecie kolorów na jasnym kolorowym wyświetlaczu 2,4 cala

 

PEWNE POMIARY W TRUDNYCH WARUNKACH

Zabierz TG297 w dowolne miejsce, dzięki przenośnej konstrukcji i ochronnej obudowie IP54

  • Pracuj bezpiecznie i bez obaw, wiedząc, że kamera termowizyjna jest w stanie wytrzymać upadek z wysokości 2 metrów
  • Wykonuj pomiary w słabo oświetlonych i trudno dostępnych miejscach, dzięki jasnej latarce LED
  • Łatwo znajduj TG297 w torbie z narzędziami, dzięki ergonomicznemu uchwytowi
  • Polegaj na bezpieczeństwie światowej klasy gwarancji FLIR 2-10

 TG297

 

Specyfikacje

 

DANE TECHNICZNE

IMAGING AND OPTICAL DATA

IR resolution

160 × 120 pixels

Digital image enhancement

Yes

Thermal sensitivity/NETD

<70 mK

Field of view (FOV)

57° × 44°

Minimum focus distance

0.3 m (0.98 ft)

Distance to spot ratio

30:01:00

Image frequency

8.7 Hz

Focus

Fixed

Focal plane array/spectral range

Uncooled microbolometer/7.5–14 µm

Detector pitch

12 μm

IMAGE PRESENTATION

Display resolution

320 × 240 pixels

Screen size

2.4 in. portrait

Color palettes

Iron , Rainbow, White hot, Black hot, Arctic, Lava

Image adjustment

Automatic

Image modes

MSX® (Multi Spectral Dynamic Imaging)
Visual with temperature reading

Gallery

Yes

MEASUREMENT AND ANALYSIS

Object temperature range

-25°C to 1030°C (-13°F to 1886°F)

Measurement accuracy

-25°C to 50°C (-13°F to 122°F): up to ±3°C (±7°F)
50 to 100°C (122 to 212°F): ±1.5°C (±3°F) or ±1.5%,
whichever is greater

100°C to 500°C (212°F to 932°F): ±2.5°C (±6°F) or ± 2.5% whichever is greater
500°C to 1030°C (932°F to 1886°F): ±3°C (±7°F) or ± 3%,
whichever is greater

IR temperature resolution

0.1°C (0.2°F)

Repeatability of reading

±1% of reading or ±1°C (2°F), whichever is greater

Response time

150 ms

IR thermometer measurement

Continuous scanning

Minimum measurement distance

0.26 m (0.85 ft)f

Spotmeter

Center spot on/off

SET-UP AND SERVICE FUNCTIONS

Set-up commands

Local adaptation of units, language, date, and time formats
Screen brightness (high, medium, low)
Gallery, deletion of images

Emissivity correction

Yes: 4 pre-set levels with custom adjustment of 0.1–0.99

IMAGE STORAGE AND VISUAL CAMERA

Storage capacity on 4 GB card

50,000 images

Image file format

JPEG w/ spot temp data

Digital camera resolution

2 MP (1600 × 1200 pixels)

Field of view (FOV)

71° × 56°, adapts to IR lens

LIGHT AND LASER

Flashlight

100 lumens LED, on/off option

Class 1 laser

Projects center spot and outlines circular measurement area to indicate size

DATA COMMUNCATION INTERFACES

Bluetooth

BLE

USB

Type-C: data transfer, power

ADDITIONAL DATA

Battery type

Rechargeable 3.7 V Li-ion battery

Battery operating time

5 hrs scanning

Battery charging time

4 hrs to 90%

Power management

Adjustable: off, 5 min, 15 min, 30 min

Shock/vibration

25 g (IEC 60068-2-27); 2 g (IEC 60068-2-6)

Drop

Designed for 2 m (6.56 ft)

Weight

0.394 kg (13.9 oz)

Size (L × W × H)

210 × 64 × 81 mm (8.3 × 2.5 × 3.2 in)

PACKAGE CONTENTS

Camera, wrist strap lanyard, USB cable, pouch, printed documentation

 

Specifications are subject to change without notice. For the most up-to-date specs, go to www.flir.com

 

  

Film FLIR TG297

 

Pirometr termowizyjny FLIR TG297

 

 

 

 

     Z JAK DUŻEJ ODLEGŁOŚCI MOŻNA MIERZYĆ? 

     Kluczowy jest stosunek odległości do wielkości plamki pomiarowej 

 

 

 

 

Jeśli niedawno została zakupiona kamera termowizyjna, możesz się zastanawiać, z jak dużej odległości można nią wykonywać pomiary. Enewntualnie chcesz kupić kamerę, ale nie masz pewności, która będzie dokładnie mierzyć cel i jednocześnie zmieści się w budżecie. Odpowiedź na pytanie „Z jak dużej odległości można mierzyć?” zależy od takich czynników, jak rozdzielczość, chwilowe pole widzenia (IFOV), obiektywy, wielkość obiektu i innych. 

 

Można to porównać do badania wzroku w gabinecie lekarskim. Gdy spojrzysz na tablicę do badania wzroku z krzesła w gabinecie, możesz być w stanie zobaczyć litery w najmniejszym wierszu – ale z jakiej maksymalnej odległości będzie można je odczytać (czyli „zmierzyć” je)? Jeśli masz doskonały wzrok (20/20), możesz odczytać najmniejsze litery z większej odległości. W takim przypadku wzrok 20/20 odpowiadałby kamerze termowizyjnej o wysokiej rozdzielczości. Jeśli Twój wzrok nie jest doskonały, możesz poprawić go okularami (czyli dodać szkło powiększające do kamery) lub podejść bliżej tablicy do badania wzroku (czyli zmniejszyć odległość od celu). 

 

Ważne jest zrozumienie, czym jest stosunek odległości do wielkości plamki pomiarowej. Stosunek odległości do średnicy plamki pomiarowej to wartość informująca o tym, jak daleko można być od celu o określonych wymiarach i nadal uzyskiwać dokładny pomiar temperatury. 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 1

W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury

 

 

Aby zapewnić najdokładniejszy pomiar temperatury, na celu powinno być skupionych jak najwięcej pikseli detektora kamery. Zapewni to więcej szczegółów na obrazie termowizyjnym. W miarę oddalania się od mierzonego obiektu tracona jest zdolność do dokładnego pomiaru temperatury. Im większa rozdzielczość kamery (większa liczba pikseli w celu), tym bardziej prawdopodobne jest uzyskanie dokładnych wyników z większej odlegości. Zoom cyfrowy nie poprawia dokładności, więc wyższa rozdzielczość lub wąskie pole widzenia ma kluczowe znaczenie. 

 

Załóżmy, że chcesz uzyskać dokładny pomiar temperatury 20-milimetrowego celu znajdującego się w odległości 15 metrów od kamery termowizyjnej. Jak dowiedzieć się, czy dana kamera może to zrobić? Trzeba sprawdzić dane techniczne kamery – pole widzenia i rozdzielczość. Załóżmy, że rozdzielczość kamery wynosi 320 × 240, a obiektyw ma 24-stopniowe pole widzenia w poziomie. 

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 2

IFOV jest rzutem kątowym jednego piksela detektora na obrazie w podczerwieni. Powierzchnia, jaką może widzieć każdy piksel, zależy od odległości od celu dla danego obiektywu.

 

 

Najpierw trzeba obliczyć IFOV w miliradianach (mrad) z następującego wzoru: 

IFOV = (FOV/liczba pikseli*) × [(3,14/180)(1000)]

* Użyj liczby pikseli, która odpowiada polu widzenia Twojego obiektywu (w poziomie/ pionie) 

 

Jako że obiektyw ma 24 stopnie FOV w poziomie, należy podzielić 24 przez poziomą rozdzielczość kamery w pikselach – w tym przypadku 320. Następnie trzeba pomnożyć tę liczbę przez 17,44, co jest wynikiem (3,14/180) (1000) z powyższego równania. 

(24/320) × 17,44 = 1,308 mrad

Wiedząc, że IFOV wynosi 1,308 mrad, trzeba obliczyć IFOV w milimetrach z następującego równania:

IFOV (mm): (1,308/1000) × 15 000* mm = 19,62 mm

* Odległość od celu 

 

Co oznacza ta liczba? Stosunek odległości do średnicy plamki pomiarowej wynosi 19,62:15 000. Ta wartość jest mierzalną wielkością jednego piksela (1 × 1). Mówiąc w uproszczeniu, wynik informuje, że kamera może zmierzyć plamkę pomiarową 19,62 mm z odległości 15 metrów.  

 

Ten pomiar pojedynczego piksela nazywany jest „teoretycznym stosunkiem odległości do wielkości plamki pomiarowej ” (SSR). Niektórzy producenci podają teoretyczny stosunek odległości do średnicy plamki pomiarowej w danych technicznych produktów. Chociaż można to uznać za rzeczywisty stosunek odległości do średnicy plamki pomiarowej, jest to zwodnicze, ponieważ nie musi to być najbardziej dokładna wartość. Jest tak dlatego, że informuje tylko o temperaturze bardzo małego obszaru w obrębie pojedynczego piksela. Jak wspomniano wcześniej, w celu zapewnienia największej dokładności należy uzyskać jak najwięcej pikseli w celu. Jeden lub dwa piksele mogą wystarczyć, aby jakościowego ustalenia , że istnieje różnica temperatur, ale mogą nie wystarczyć do zapewnienia dokładnego odwzorowania średniej temperatury danego obszaru.  

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 3

W idealnej sytuacji odwzorowywany cel powinien pokrywać co najmniej jeden piksel.W celu zapewnienia dokładniejszych odczytów należy pokryć większy obszar, aby uwzględnić dyspersję optyczną rzutowania. 

 

 

Pomiar jednopikselowy może być niedokładny z różnych powodów:

  • Kamery termowizyjne mogą mieć złe piksele.
  • Obiekty odbijają światło – zadrapanie lub odbicie światła słonecznego mogłoby spowodować wynik fałszywie pozytywny oraz fałszywie wysoki odczyt.
  • Obiekt gorący – na przykład łeb śruby – może być niemalże tej samej szerokości, co piksel, ale piksel jest kwadratowy, a łeb śruby sześciokątny.
  • Żaden układ optyczny nie jest doskonały – zawsze występują jakieś zniekształcenia, które wpływają na pomiary. 

 

Ze względu na zjawisko zwane dyspersją optyczną promieniowanie z bardzo małej powierzchni nie zapewni jednemu elementowi detektora wystarczająco dużo energii, aby umożliwić uzyskanie poprawnej wartości. Należy upewnić się, że gorący obszar odczytu wartości punktowej ma co najmniej 3 × 3 piksele. Wystarczy pomnożyć teoretyczny stosunek odległości do wielkości plamki pomiarowej w milimetrach przez trzy, co pozwoli uzyskać stosunek plamki pomiarowej 3 × 3 piksele zamiast 1 × 1. Taka wartość będzie dokładniejsza.  

 

Po pomnożeniu IFOV w mm (19,62) przez 3 uzyskujemy 58,86 mm.

 

Oznacza to, że można zmierzyć obiekt o średnicy 58,86 milimetra z odległości 15 metrów. 

 

A teraz załóżmy, że chcemy zmierzyć obiekt o średnicy 20 milimetrów. Z jakiej maksymalnej odległości można dokładnie zmierzyć powierzchnię tej wielkości? Trzeba zastosować mnożenie krzyżowe: 

IFOV w mm: Odległość w mm

(15 m = 15 000 mm)

58,86:15 000

20 mm : x

15000*20 = 58,86*x

300 000/58,86 = x

x = 5096,8 mm, czyli około 5,1 m

 

Kamerą o rozdzielczości 320 × 240 pikseli można zmierzyć obiekt o średnicy 20 mm z odległości około 5 m od celu.

 

STOSUNEK ODLEGŁOŚCI DO WIELKOŚCI PLAMKI POMIAROWEJ 4

Ilustracja pola widzenia przy 2,6 mrad i 1,36 mrad. Udostępniona przez Infrared Training Center.

 

 

Inni producenci mogą nie używać tej wartości, gdy omawiają IFOV lub SSR, ale w praktyce zapewnia ona dokładniejszy odczyt temperatury anomalii. 

 

Stosunek odległości do średnicy plamki pomiarowej jest ważny, ponieważ pomaga zrozumieć, czy kamera termowizyjna jest w stanie dokładnie mierzyć temperaturę z wymaganej odległości. Jeśli chcesz mierzyć małe cele z dużej odległości, znajomość stosunku odległości do wielkości plamki pomiarowej czyli odległości dokładnego pomiaru ma kluczowe znaczenie. 

 

Jeśli planujesz badanie termograficzne, zastanów się, czy możesz podejść wystarczająco blisko celu, aby uzyskać dokładny odczyt. Dokładny znaczy tyle, co wystarczająco dobry dla prawidłowej interpretacji. Niekoniecznie nawet musi to oznaczać „w zakresie dokładności kamery”. Jeśli nie uwzględnisz stosunku odległości do średnicy plamki pomiarowej, możesz uzyskać odczyt odchylony o kilkadziesiąt, a nawet kilkaset stopni.

 

 

 

Zewnętrzne systemy ociepleń stają się coraz bardziej popularne na europejskim rynku budowlanym. Wraz z powstaniem bardziej rygorystycznych wymagań certyfikacji energetycznej oraz przepisów w zakresie efektywności energetycznej budynków, konstruktorzy zwracają coraz większą uwagę na dokładne i efektywne stosowanie tych systemów. Niestety wiele metrów kwadratowych zewnętrznych systemów izolacji cieplnej w nowych lub istniejących budynkach zostały zainstalowane bez użycia najlepszych praktyk. W celu lepszego zrozumienia nieprawidłowości w systemach izolacji, jak również charakterystyki cieplnej produktów izolacyjnych, konsorcjum firm, w tym włoskie Stowarzyszenie Izolacji Cieplnej i Akustycznej (Association for Thermal and Acoustic Insulation - ANIT), przeprowadziło projekt badawczy z użyciem kamer termowizyjnych FLIR Systems.

Badania mające na celu uznanie nieprawidłowości w systemach izolacji oraz ich montażu zostały przeprowadzone przez ANIT i dwóch członków tej organizacji, a mianowicie firm: Caparol oraz FLIR Systems. Badanie było koordynowane przez Tep srl, przedsiębiorstwo usług inżynieryjnych, koncentrując się na badaniach nieniszczących efektywności energetycznej budynków.

Budowanie na próbę

W celu badania zjawisk cieplnych charakteryzujących instalację zewnętrznych systemów ociepleń, zbudowano egzemplarz testowy, pokryty z trzech stron płytą izolacji cieplnej (EPS z dodatkiem grafitu). W górnej części próbki ściany pokryte były w taki sposób, że posiadały typowe błędy wykonawcze. Dolna część była odpowiednio wykonana, z lub bez kołków EPS.

Aktywna analiza termograficzna

Próbka ściany monitorowana i analizowana była podczas cyklu ładowania i rozładowania przez energię słoneczną. Jej okresowe obrazy termiczne były rejestrowane i przechowywane. Dzięki aktywnej termografii, ładowanie odbywało się przez promieniowanie słoneczne i wywierało wpływ na powierzchnię próbki testowej. Podczas fazy rozładowania określana była struktura, w której gromadzona jest energia, a następnie monitorowano uwalnianie energii w cieniu. Do tego badania ANIT zdecydował się na użycie kamery termowizyjnej FLIR T640 , która okazała się być najlepiej dostosowana do tego typu badania.
FLIR IBROS próbka powierzchni termiczne systemy ociepleń

 

 

 

 

 

 

 

 

 

 

 

 Rys.1 Wzór układu testowego przed pokryciem.

Przenikanie ciepła w różnych warunkach

Aby prawidłowo zrozumieć to, co wydarzyło się w różnych przypadkach wskazanych na obrazie termograficznym, należy przeanalizować i poznać ewentualne anomalia, dotyczące wymiany ciepła w zmiennych warunkach na powierzchni izolacji.

Przy przepływie ciepła w zmiennych warunkach (tj. zmiennych temperaturach powierzchni) odporność termiczna przewodności właściwej i grubość każdego z tych materiałów nie są wystarczające do określenia właściwości termicznych różnych warstw. W rzeczywistości, należy również wziąć pod uwagę gęstość i ciepło właściwe materiałów. Parametry, które charakteryzują materiały w warunkach zmiennych połączonych z promieniowaniem struktury powierzchni zewnętrznej izolacji cieplnej są nazywane efektywnością termiczną.

Efektywność termiczna jest miarą zdolności cieplnej penetracji energii. Istotna jest: temperatura powierzchni zewnętrznej izolacji cieplnej, którą poddaje się silnemu wpływowi promieniowania słonecznego. Następnie bada się w jaki sposób materiał z poziomu powierzchni prowadzi ciepło do kolejnych warstw materiału w połączeniu ze zdolnością materiału do gromadzenia ciepła. Efektywność w tym kontekście wyraża się, jako łatwość materiału do ogrzewania, za pomocą promieniowania słonecznego wewnątrz: im niższa wartość, tym mniejsza jest ilość energii potrzebnej do ogrzewania materiału.

Próbka badawcza składa się z kilku materiałów o różnych wartościach efektywności cieplnej:

Klej do izolacji (EFR. = 906), EPS z dodatkiem grafitu (eff = 27) i PCV - z kołkami (eff = 530).

Wykres 1

Wykres 1 przedstawiający różnice temperatur, które występują na górnej części próbki podczas obciążeń termicznych, w których są obecne i celowe błędy instalacyjne.

Wykres 2
Wykres 2 temperatury prezentujący górną część próbki pokazuje, że nie ma materiału izolacyjnego o małej przewodności cieplnej, o ograniczonej pojemności cieplnej, kleju i kołków PVC, które mają wysoką przewodność cieplną oraz większą pojemność cieplną. Z uwagi na energię zmagazynowaną w wyniku promieniowania słonecznego izolacja chłodzi się szybciej, ponieważ ilość zmagazynowanej energii jest mniejsza to znaczy, że ma objętościowo mniejszą pojemność cieplną.

Analiza próbki

Analiza właściwości materiałów wykazuje różne zachowanie pod względem energii ładowania spowodowanego promieniowaniem i późniejsze opróżnienia energii wskutek cienia.

a) po naświetleniu promieniowaniem słonecznym stymulacja ogrzeje powierzchnię. PCW i klej, mają większą efektywność niż EPS, więc będą one początkowo chłodniejsze niż SWW i EPS ogrzeje się łatwiej. Kołki i odcinki klejone będą najzimniejszym punktem powierzchni.

b) Następnie badana próbka jest schładzana w cieniu. PVC i klej mają większą objętościową wydajność ciepła, dzięki temu te materiały zgromadziły więcej energii cieplnej, a tym samym będą początkowo cieplejsze niż EPS. Materiał EPS szybciej ostygnie; kołki i spoiny klejone będzią najgorętszymi punktami na powierzchni.

Analiza termiczna jasno określa, że istnieją dwa rodzaje warstw powierzchniowych:

materiał izolacyjny o małej przewodności cieplnej i ograniczonej pojemności cieplnej, klej i kołki PCV posiadające wyższą przewodność cieplną oraz większą pojemność cieplną. Podczas wykonywania analizy zdjęć termograficznych, osoba wykonująca pomiar musi być świadoma tego, co jest identyfikowane jako anomalia powierzchni: konieczne jest, aby zrozumieć, zewnętrzny system izolacji cieplnej, a to jak stwierdzono w odpowiednich warunkach środowiskowych, może być uważane jako wada.

FLIR IBROS próbka powierzchni termowizja termiczne systemy ociepleń

Kamera FLIR T640bx

ANIT zdecydował się na wykorzystaniekamery termowizyjnej FLIR T640bx z powodu różnych wymagań technicznych. Badanie próbki wymaga możliwości zbadania luki temperatury blisko 0,5 ° C, do rejestrowania i kontrolowania powierzchni automatycznej zmiany temperatury podczas upływu czasu. Potrzebny aparat również musi być w stanie generować wysokiej jakości obrazy wideo, które mogłyby aktywnie badać zachowania termiczne powierzchni.
FLIR iBros T640bx
Kamera FLIR T640bx idealnie się do tego nadaje. T640bx to wysokiej klasy kamera termowizyjna z wbudowaną wizualną kamerą o rozdzielczości 5MP, opcją wymiennych obiektywów, auto-focusem i dużym 4,3" ekranem dotykowym LCD. Łączy w sobie doskonałą ergonomię z najwyższą jakością obrazu, zapewniając wyrazistość i dokładność oraz rozbudowane możliwości komunikacyjne.

Rys.4 T640bx to wysokiej klasy kamera termowizyjna z wbudowaną kamerą o rozdzielczości 5MP światła widzialnego.

Właściwości

FLIR T600 - 172 800 pikseli
Rozdzielczość - 480 x 360

Wyjatkowa gwarancja FLIR Systems: 2-5-10

Główne zalety serii T 6xx:

  • UltraMax – jeszce wieksza rozdzielczość na zdjęciach termowizyjnych - teraz kamera termowizyjna FLIR pozwala na wykonywanie zdjęć termowizyjnych z 4x wiekszą rozdzielczością
  • MSX – zaawansowana technologia FLIR pozwala połączyc obraz podczerwony z obrazem widzianym, zaowocowało to w uzyskaniu niesamowitej jakości oraz szczegółowości obrazu
  • Komunikacja bezprzewodowa – wbudowany modół Wi-Fi pozwala na komunikację z urzadzeniami mobilnymi takimi jak telefony komórkowe, laptopy. Dzięki darmowym aplikacjom mozna przesyłac dane do urządzeń mobilnych, zdalnie sterować kamerą, ogladac obraz z kamery w czasie rzeczywistym
  • Notatki na ekranie – dotykowy ekran pozwala na nanoszenie notatek za pomocą rysika, nie ma potrzeby czekać, aż zdjęcie zostanie przeslane do komputera. Jesli znajdziesz jakiś punkt na ktory trzeba zwrócic szczególna uwage - zaznacz go!
  • Notatki głosowe – masz watpliwości, chcesz cos podkreślić, masz zajete ręce - nagraj notatke głosowa i dołącz ja do zdjecia.
  • Obrotowy obiektyw - pozwala na pochylenie obiektywu w zakresie 120º, umozliwia wykonywanie zdjęć w trudno dostępnych miejscach.
  • Fuzja termiczna oraz obraz w obrazie - pozwala na umieszczenie dowolnie skalowalnego obrazu termicznego w obrazie widzialnym
  • Wbudowany GPS - dodaj do obrazu współrzędne geograficzne
  • Nastawa ostrości - ręczna i automatyczna nastawa ostrości
  • Wbudowany kompas - podaje kierunek w jakim wykonywane jest obrazowanie termiczne

Specyfikacja

Specyfikacja techniczna Kamery termowizyjnej T600:

FLIR T600
Dokładność ±2% lub 2°C
Rozdzielczość detektora 172800 (480 x 360)
Czułość termiczna <0.04°C
Zakres pomiaru temperatury -40°C do 650°C (-40°F to 1202°F)
Wielkość wyświetlacza 4.3”/Panoramiczny
Wizjer Nie
Tryby pomiarowe 6 trybów: punkt centralny, punkt gorący (powierzchnia); punkt zimny (powierzchnia); brak pomiarów; ustawienia użytkownika 1; ustawienia użytkownika 2
Punkty pomiarowe 10 przesuwalnych
Częstotliwość odświeżania 30 Hz
FOV 25° × 19°
FOV taki jak w obiektywie Tak
Opcjonalne obiektywy 6: 7° & 15° Tele, 45° & 80° Szer.; Makro: 100 um, 50 um, 25 um
Ustawienie ostrości Manualne & Automatyczne
Ciągły auto-fokus Nie
Minimalna odległość ostrzenia 0.82 ft (0.25 m)
Zdjęcie radiometryczne JPEG zapisane na kartę SD Tak
Film MPEG4 zapisany na kartę SD (nie radiometryczny) Tak
Palety 7: Arktyczna, Gorąca biel, Gorąca czerń, Żelazo, Lawa, Tęcza, Tęcza HC
Oprogramowanie FLIR Tools Tak
Raport w kamerze Tak
Czas pracy na baterii >2.5 godzin
Kamera wbudowana 5 MP
Wbudowane podświetlenie LED Tak
Ekran dotykowy Tak
Zoom cyfrowy
Alarm izolacji Tak
Alarm punktu rosy Tak
Połączenie MeterLink® Tak
Wskaźnik laserowy Tak
Indykator wskaźnika na obrazie IR Tak
Kompas Tak
GPS Tak
Korekcja dla okna wziernikowego IR Window Tak
Delta T Tak
Obraz w obrazie Dostosowanie PIP
Fuzja termiczna Tak
MSX™ Obrazowanie multispektralne Tak
Szkic na ekranie Tak
Szkic na zdjęciu IR Tak
Notatki tekstowe/głosowe Tak
Oprogramowanie FLIR Tools Mobile na Apple® & Android™ Tak
Streaming video Tak
Zdalne sterowanie FLIR App Remote Control Tak
Odporność na upadek (2 metry/6.6 stóp) Tak
Waga (włącznie z bateriami) 1.3 kg (2.87 lbs)

Zastosowanie kamer T600:

  • Wykonywanie pomiarów testowych instalacji 
  • Wyszukiwanie problemów z urządzeniami wentylacji, klimatyzacji
  • Znajdowanie usterek związanych z instalacjami sanitarnymi
  • Audyty energetyczne budynków

Zalety kamer termowizynych z serii T 6xx:

  • instrukcja obsługi w języku polskim
  • podświetlane przyciski
  • niska waga 1,3 kg
  • dotykowy monitor
  • 10 lat gwarancji na detektor
  • 2 lata gwarancji na kamerę
  • 2,5 godzin pracy na zasilaniu bateryjnym
  • certyfikat kalibracji w cenie zestawu

Zrzuty ekranów

Przykładowe zrzuty ekranów

 

breaker-panel-infrared breaker-panel-infrared
discharge-pipe discharge-pipe
single-phase-transformer single-phase-transformer
motor-bearing-infrared motor-bearing-infrared

MSX

 

flir-t640-motors flir-t640-motors
flir-t640-msx-motors flir-t640-msx-motors
flir-t640-panel flir-t640-panel
flir-t640-msx-panel flir-t640-msx-panel
flir-t640-recessed-lights flir-t640-recessed-lights
flir-t640-msx-recessed-lights flir-t640-msx-recessed-lights

Zdjęcia aplikacji

Przykładowe zdjęcia aplikacji kamery termowizyjnej T600:

 

 

  Najlepszy system ogrzewania domu to taki, którego nie widać. Dlatego systemy ogrzewania podłogowego są tak atrakcyjne i coraz bardziej popularne. Jednak ich niewidoczność może być przeszkodą. Gdy coś jest nie tak z systemem ogrzewania, czy można to sprawdzić? Jedynym skutecznym sposobem jest zastosowanie kamery termowizyjnej.  

 

 

 

 

 

W systemie podłogowego ogrzewania ciepło jest dostarczane przez rurki z ciepłą wodą lub przewody elektryczne zainstalowane pod podłogą. System podłogowy jest bardzo wydajnym sposobem ogrzewania domu, który zwiększa komfort i redukuje koszty energii. W nowych budynkach z twardymi podłogami, rura grzewcza jest zwykle wbudowana w posadzkę.

Valerio Di Stefano, włoski inżynier i projektant, który specjalizuje się w zarządzaniu energią i termografią, posiada wieloletnie doświadczenie z promiennikowymi systemami podłogowymi. Niedawno zakupił kamerę termowizyjną FLIR E8, głównie do przeprowadzania audytów energetycznych systemów ogrzewania i budynków.

FLIR iBros ogrzewanie podłogowe
Rys.1 Kamera termowizyjna wyraźnie pokazuje podziemną sieć rurociągów promiennikowego systemu grzewczego

Wykrywanie ukrytych wad

"Systemy promiennikowe stały się bardzo popularne w ostatnich latach, zwłaszcza w nowych budynkach mieszkalnych" mówi Valerio Di Stefano. "Czasami jednak system, który działa poprawnie najprawdopodobniej będzie miał wady ukryte. Mogą być to problemy ze sposobem wykonania posadzki, ułożeniem rur lub problemami z optymalizacją transportu energii.

Dobrą wiadomością jest to, że wszystkie te problemy mogą być szybko wykrywane przez kamerę termowizyjną. "

"Normalnie, bez kamery termowizyjnej należy przyjrzeć się pompom i na podstawie tych informacji wywnioskować co się dzieje pod ziemią. Ale za pomocą kamery termowizyjnej, masz natychmiastowy podgląd na cały system ogrzewania podłogowego, dzięki ciepłu, które jest wydzielane przez system. "

Wykorzystanie termografii do ogrzewania podłogowego w praktyce

Rysunki 2a / 2b / 2c pokazują kolektor, który zasila promiennikowy system ogrzewania z pomp cyrkulacyjnych, po jednej dla każdej sekcji kolektora. Punkty SP1 i SP2 w rzeczywistości są prawie w tej samej temperaturze, ale mają taką samą wartość emisyjności, co prowadzi do błędnych wniosków.

W rzeczywistości taśma elektryczna została zastosowana do SP1, który ma wartość emisyjności bardzo bliską do wartości określonej w dokumencie. Dlatego też przepływ płynu jest rzeczywiście w temperaturze 44 ° C, a nie w 30,5 ° C.

FLIR iBros instalacja podłogowaRys.2a/2b/2c Obraz cieplny kolektora: z nieaktywną pompą z lewej i pompą aktywnie działającą z lewej.

Na rysuneku 3 został przedstawiony układ promieniowania podczas rozruchu, cyfrowe utrwalanie termiczne i obrazy wizualne. Analiza profilu została przeprowadzona na liniach pseudo prostopadłych Li1, Li2 i LI3, do działania na rurach. Po prawej stronie, linia Li2 pokazuje chłodniejszy, nierówny teren, który powinien zostać zbadany dalej, ponieważ może to oznaczać, że są zmiany w grubości posadzki lub w kleju do wykończenia. Linia Li4, w kolorze zielonym, podkreśla te różnice termiczne, które nie powinny się pojawić po zaledwie kilku decymetrach rury.
FLIR iBros wykres
Rys. 3 Termograficzny obraz przedstawiający instalację podczas rozruchu, wykres opisuje wartości termperatury

Rozważa się, czy umieszczać ogrzewanie podłogowe pod stałymi meblami. Argument przeciw: gorące powietrze z podłogi może doprowadzić meble kuchenne do "potu", czyli kondensacji. Ogrzewanie zainstalowane pod meblami może również podgrzewać je i to co jest w nich przechowywane, w tym żywność. Argumenty za stosowaniem instalacji ogrzewania podłogowego pod stałymi meblami są różne.     Z jednej strony, w przypadku, gdy układ pokoju nie zostały określony, prawdopodobnie korzystne jest zainstalowanie rur ogrzewania podłogowego w całym pomieszczeniu.

FLIR iBros podłoga w termowizji

 

Być może obecność systemu podłogowego pod meblami lub innymi przeszkodami zasadniczo zwiększa bezwładność systemu, zarówno w czasie uruchamiania i zamykania, a tak naprawdę nie pomaga kontrolować temperatury w pomieszczeniu. Właściwie, to tworzy barierę dla przepływu ciepła do obszarów zajmowanych przez przeszkody, bariera ta oczywiście wiąże się z kosztami w zakresie energii.

Rys.4 Obecność układu promiennikowego pod meblami lub innymi przeszkodami zasadniczo zwiększa bezwładność systemu, zarówno podczas uruchamiania i zamykania.Sp1 Temperatura 23,8°C, Sp2temperatura 19,3°C,Sp3 Temperatura 22,2°C

 

 


FLIR E8: Kompaktowa i efektywna kosztowo kamera termowizyjna

Valerio Di Stefano używa kompaktowej kamery FLIR E8 point-and-shoot do kontroli systemów ogrzewania podłogowego.

"Ja naprawdę odkryłem moc termiczną podczas Szkolenia Podczerwieni Center (ITC) w 2013 roku", mówi Valerio Di Stefano. "Obejrzałem różne modele kamer, ale ostatecznie zdecydowałem się na model point-and-shoot FLIR E8, ponieważ oferowała najlepszy stosunek jakości do ceny i najciekawsze funkcje w kompaktowej obudowie."

FLIR E8 posiada detektor 320 × 240, wolne ostrości obiektywu i prosty przycisk nawigacji do ustawień na ekranie, tryby obrazowania, narzędzia pomiarowe i zapisywanie plików w formacie JPEG. Kamera jest niezwykle prosta w obsłudze. E8 posiada także opatentowaną funkcję Enhancement MSX® termiczny obraz firmy FLIR, który dodaje kluczowe dane z kamery światła widzialnego na pokładzie do całego obrazu w podczerwieni w czasie rzeczywistym.

"FLIR E8 daje mi bardzo szczegółowy obraz i można jej używać do różnych zastosowań, np. do kontroli ogrzewania podłogowego i monitorowania paneli słonecznych. W każdym razie, FLIR E8 przesunął moją firmę do przodu i pomógł mi pozyskać więcej projektów. "

 

Każdego dnia miliony podróżujących korzysta z metra w Delhi. Delhi Metro Rail Corporation (DMRC) uważa, że wszystkie koleje przybywają na czas do miejsca przeznaczenia. "Być zorientowanym na usługi i dbać o swoich klientów" - tak chodzi właśnie o DMRC. Aby utrzymać stałe działanie sieci metra, DMRC korzysta z kamer termowizyjnych FLIR. 
 

zdjęcie 3

 

 

Metro Delhi jest systemem szybkiego tranzytu obsługującego miasta Delhi, Gurgaon, Noida i Ghaziabad w Indiach. Sieć składa się z siedmiu linii o łącznej długości 189,63 km z 142 stacjami, z których 35 jest podziemnych. Stanowi kombinację linii na poziomie terenu, wznoszonych oraz podziemnych i wykorzystuje zarówno szeroki rozstaw torów, jak i standardowych rozmiarów pojazdy szynowe. Metro Delhi jest budowane i obsługiwane przez Delhi Metro Rail Corporation (DMRC). Z metra dziennie korzysta średnio 1,8 miliona podróżujących, a DMRC codziennie obsługuje około 2700 przejazdów pomiędzy godziną 6:00 a 23:00, w odstępie 2 minut i 30 sekund pomiędzy kolejnymi pociągami w czasie największej częstotliwości.  

 

 

 

Przewidywanie konieczności konserwacji przy użyciu obrazowania termicznego

Ta duża i intensywnie używana sieć musi być utrzymana w dobrym stanie, aby zapobiec zużyciu sieci w wyniku intensywnego użytkowania, powodując tym samym zamieszanie dla milionów podróżujących. Dlatego też personel obsługi technicznej wykorzystuje kamery termowizyjne w ramach przewidywania prac konserwacyjnych. Mówiąc ogólnie, wszystkie urządzenia elektroniczne i podzespoły nagrzewają się, zanim ulegną awarii. Te potencjalne problemy będą wyraźnie widoczne na obrazie termicznym. Dzięki wczesnemu wykryciu tego wzrostu temperatury za pomocą kamer termowizyjnych FLIR pracownicy techniczni mogą zaplanować naprawy i uniknąć kosztownych awarii i przestojów. W tym celu wszystkie elementy sieci kolejowej są regularnie kontrolowane przez załogę obsługi technicznej za pomocą kamery termowizyjnej FLIR E50. Te okresowe inspekcje odgrywają kluczową rolę w programie profilaktycznym DMRC.  

zdjęcie 2 

 

Instalacja kamery termowizyjnej

Gdy niedawno pojawiły się problemy z siecią metra, co spowodowało ogromne opóźnienia, DMRC podejrzewał, że problem spowodowały izolatory segmentowe. Zespół techniczny DMRC zainstalował jedną z kamer termowizyjnych FLIR E50 w obudowie ochronnej IP66, wyposażonej w specjalne wzierniki oferowane do kamer termowizyjnych przez FLIR nazywane "IR Window", w celu monitorowania problematycznej sekcji przez cały dzień. Chroniona przed niekorzystnymi warunkami pogodowymi przez obudowę IP66 kamera termowizyjna FLIR E50 mogła bezpiecznie rejestrować promieniowanie podczerwone emitowane przez izolatory segmentowe i dostarczać obrazy termowizyjne ukazujące każdy piksel odpowiadający bezkontaktowemu pomiarowi temperatury. 

 

Sygnał wideo z kamery termowizyjnej FLIR E50 podłączono do rejestratora cyfrowego (DVR) o pojemności jednego terabajta, w celu zapisania danych. Po przeanalizowaniu przez godzinę izolatorów segmentowych system zapisuje plik wideo. Te godzinowe pliki wideo zostały wykorzystane do skorelowania tymczasowych wzrostów temperatury o porę dnia, obciążenie sieci i innych czynników, w celu określenia przyczyny problemu. 

zdjęcie 4

 


Przyczyny znalezione w oparciu o dane termiczne

Wykonanie obudowy ochronnej dla kamery termowizyjnej i rejestratora zostało wykonane przez dystrybutora marki FLIR, pracowników NNK International i DMRC. Instalację wykonali w nocy, aby nie sprawiać problemu użytkownikom metra.

Testy zostały przeprowadzone w miejscach, w których były duże problemy, a wyniki były rejestrowane w przypadku, gdy pantograf przechodził w izolator segmentowy. Zaobserwowane, że czynniki takie jak obciążenie systemu i warunki środowiskowe miały istotny wpływ na pogorszenie stanów izolatorów segmentowych. Aby dodatkowo opisać problem używano kamery termowizyjnej FLIR E50 do monitorowania izolatorów w przypadku, gdy temperatura izolatorów segmentowych przekroczyła ustalony wcześniej próg.

Dokładna analiza danych termicznych pozwoliła DMRC podjąć odpowiednie działania. Ta informacja termiczna pomogła również DMRC sprawdzać swoje systemy w różnych warunkach pogodowych i przy różnym załadunku, aby zapewnić lepsze usługi dla pasażerów. 

zdjęcie 1 FLIR E50

 

Co to jest izolator segmentowy?

Izolatory segmentowe są wykorzystywane w systemie linii napowietrznych kolei, aby izolować elektrycznie i oddzielać poszczególne sekcje w celu konserwacji, bez konieczności wyłączania całego systemu. System linii napowietrznych jest podzielony na części rozdzielone elektrycznie. 

 zdjęcie 5

 

 

 

W Polsce dystrybutorem kamer termowizyjnych FLIR Systems jest iBros technic. iBros technic pomoże w doborze rozwiązania, stworzy lub dołoży potrzebne elementy dodatkowe i akcesoria do indywidualnych potrzeb.

Zapraszamy do kontaktu  +48 12 3767051  Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript. 

promocja kamery termowizyjne flir dla uczelni jednostek naukowych w iBros 

 

 

 

 

 

 

Dzięki kamerze termowizuyjnej FLIR E6 lub E60 można przeszkolić studentów w zakresie inspekcji instalacji elektrycznych, sanitarnych i termomodernizacji. Studenci poznają jak zaoszczędzać czas i pieniądze w przyszłej pracy.

Kamery termowizyjne są obecnie stosowane do kontroli instalacji elektrycznych i mechanicznych. Newralgiczne obszary stają się wyraźnie widoczne na obrazie termicznym. Kamery są także powszechnie stosowane do wykrywania szerokiej gamy niezgodności budowlanych, nieszczelności, braku izolacji.

Kamera termowizyjna a pirometr

Pirometr pozwala na bezkontaktowy pomiar temperatury punktu, wielkość plamki pomiarowej zależy od klasy pirometru. Kamery FLIR-a pozwalają na pomiar temperatury dla całego obrazu. Model E6 posiada rozdzielczość detektora 160 x 120 pikseli. Oznacza to, że jedno zdjęcie wykonane za pomocą kamery jest ona równoważne 19 200 pomiarom wykonanym za pomocą pirometru. Model E60 posiada rozdzielczość detektora 320 x 240 pikseli, co pozwala na jeszcze bardziej szczegółowe i dokładne pomiary. Ponieważ cena kamer termowizyjnych spadła drastycznie w ciągu ostatnich lat coraz więcej osób przestaje stosować pirometry i zaczyna stosować kamery termowizyjne.

Nowoczesne w każdym calu - funkcje kamery termowizyjnej E60

Bezprzewodowa łączność - dzięki łączności Wi-Fi z tabletem i smartfonem pozwala na usprawnienie i przekazywanie innym obrazów w podczerwieni i danych otrzymanych z pomiarów. Rónież połączenie Bluetoooth z innego typu miernikami umożliwia kamerom termowizyjnym pomiary innych parametrów, niż tylko temperatura, w celu oceny stopnia zawilgocenia i uszkodzeń elektrycznych.
Optyka szerokokątna oraz dwukrotne powiększenie - przy wykonywaniu zdjęć wewnątrz budynków idealnie sprawdzają się soczewki szerokokątne, a dwukrotne przybliżenie w trakcie pomiarów małych obiektów oraz z dużej odległości.
Ekran sterowany dotykowo - kolejne ulepszenie, które sprawia, że praca termografera staje się łatwiejsza i bardziej przyjemna. Oferuje możliwość  dokonywania analizy zdjęć bezpośrednio na obrazach.
Obraz w obrazie (P-i-P) oraz MSX - funkcje pomagające lepiej zinterpretować newlargiczne punkty na mierzonym obiekcie oraz lepiej przedstawić swoje wnioski wyciągnięte z pomiarów.

Nowa specjalna ofeta dla szkół i ośrodków edukacyjnych
Przyszli specjaliści: elektrycy, specjaliści utrzymania ruchu, instalatorzy, inspektorzy budowlani powinni mieć podczas szkolenia dostęp do nowoczesnego sprzętu. W celu umożliwienia wprowadzenia termografii do programów edukacyjnych ośrodków szkoleniowych i uczelni oraz wychodząc naprzeciw wymogom nowoczesnego rynku pracy,  FLIR wprowadził na rynek:

Promocyjny zestaw FLIR E6 lub E60 TYLKO TERAZ -50 %

Pierwszy zestaw jest dostępny w rewelacyjnej cenie, tylko : 847,50 €.

W skład zestawu wchodzą następujące elementy:
Kamera termowizyjna FLIR model  E6: standardowa cena katalogowa: 1 695 € *
• broszury edukacyjne o zastosowaniach termografii w przemyśle, budownictwie, utrzymaniu ruchu

Drugi zestaw jest dostępny w również rewelacyjnej cenie, tylko : 2 997,50 €.

W skład zestawu wchodzą następujące elementy:
 Kamera termowizyjna FLIR model  E60: standardowa cena katalogowa: 5 995 € *
• broszury edukacyjne o zastosowaniach termografii w przemyśle, budownictwie, utrzymaniu ruchu

Super ofertę w wersji pdf możesz ściągnąć klikając na link znajdujący się poniżej.

 

 

 

 

 

 

Właściciele koni od wieków używają własnych rąk do identyfikacji różnic temperatury swoich koni, jako źródła wskazania problemów zdrowotnych. Ludzki dotyk nie może wykryć zmian w temperaturze poniżej dwóch stopni Celsjusza. Nowoczesna kamera termowizyjna może wykryć różnice temperatury mniejsze niż 0.03 stopnie Celsjusza. W trakcie identyfikacji pozwala na dokładniejsze wykrycie problemów zdrowotnych związanych z temperaturą. Koński konsultant termograficzny Lynne Boyes szybko wykorzystał potencjał technologi i wprowadził ofertę termograficznego przeglądu w jego firmie ThermoZone w Kwa-Zulu Natal Midliands, która jest specjalistycznym i poważnym centrum dla koni w Południowej Afryce. „Kamera termowizyjna jest profesjonalnym narzędziem służącym do wyróżnienia obszarów problemowych oraz może być postrzegana jako system wczesnego ostrzegania w celu identyfikacji kłopotów jakie zaczynają się pojawiać. Pozwala to na wczesne leczenie i zapobieganie dalszym poważnym obrażeniom.”

Według Boyes kluczem do termografii koni jest spojrzenie na asymetrię wzorów termicznych. „Korpus jest zaprojektowany do bycia w równowadze także oba boki konia powinny wykazywać identyczne wzorce termiczne. Nieprawidłowości są pokazane jako gorące lub zimne miejsca, wskazując zapalenia lub urazy neurologiczne. W niektórych przypadkach dolegliwość może być wykryta nawet dwa tygodnie przed pojawieniem się oznak niepokoju u konia". 

Do końskiej kontroli termograficznej Boyes używa kamery termowizyjnej FLIR E60bx. „Kiedy sprawdzałem dostępne kamery termowizyjne zdałem sobie sprawę, że potrzebuję kamery z odpowiednią jakością obrazu i czułością termiczną. Kamera termowizyjna FLIR E60bx o rozdzielczości 320x240 pikseli i czułości termicznej poniżej 50mK dostarcza dokładnie taką jakość obrazu, jakiej potrzebuję, przy bardzo konkurencyjnej cenie. Dodatkową zaletą jest to, że można ją obsługiwać samodzielnie jedną ręką. Oznacza to, że mam drugą rękę wolną do obsługi konia. "

Użyteczne funkcje

"Kolejną przydatną funkcją jest nagrywanie głosu", kontynuuje Boyes. "Funkcja ta pozwala mi nagrywać komentarze głosowe, więc nie muszę trzymać pióra i arkusza papieru. Łączność WiFi FLIR E60bx do przenoszenia obrazu z kamery termowizyjnej na tablet również okazały się bardzo pomocne. Korzystając z tableta mogę zrobić raporty na miejscu , niemal w czasie rzeczywistym, więc tym samym mogę poświęcić więcej czasu na robienie tego, co kocham, pracując w dziedzinie kontrolnej koni. "

 FLIR iBros badanie termograficzne temperatury ciała konia png
Rys.1 Kamery termowizyjne mogą być wykorzystywane do wykrycia zakażenia, uszkodzenia w tkankach miękkich, takich jak mięśnie i ścięgna i innych problemów zdrowotnych.

FLIR iBros badanie termograficzne grzbiet konia png
Rys.2 Ten oto obraz termiczny pokazuje wzór typowy określający stan znany jako tzw. kissing spine (całujące się wyrostki kolczyste). Diagnozę potwierdzono badaniem rentgenowskim.

Boyes zaczął badać termografią konie kilkadziesiąt lat temu. "Czytałem artykuł o termowizji i jej stosowaniu w znalezieniu problemów u koni. To co przeczytałem wywarło na mnie absolutne wrażenie. To było jeszcze przed rozpowszechnieniem internetu, więc pozyskanie informacji na temat termografii koni było bardzo ograniczone. Udało mi się jednak dowiedzieć, jaka była cena kamery termowizyjnej. Najgorsze było to, że przekraczała ona mój budżet. Więc ten pomysł został zostawiony na półce, ale nie całkiem zapomniany."

Niedrogie kamery termowizyjne

"W ostatnich latach spotkałem kilka przypadków, w których rzeczywista dolegliwość nie została określona, a właściciel powiedział, że koń nie wskazywał oznak bólu", kontynuuje Boyes. "Z powodu bólu spowodowanego przez uszkodzenie, koń zrekompensuje swoje stanowisko, aby złagodzić szkody bólu. Ta zmiana postawy często powoduje ból w innych częściach ciała zwierzęcia. Nazywa się to ''wspomniany ból" przez lekarzy weterynarii. Wspomniany ból, nieleczony może stać się poważnym problemem dla konia. Obszary te nie są widoczne, ale są związane ze zwiększonym ciepłem w obszarach dotkniętych tym problemem. Chciałem mieć dodatkowe narzędzie, aby pomogło mi ocenić ten rodzaj obrażeń, więc mój pomysł wykorzystania termografii powrócił. "

FLIR iBros badanie termograficzne koni kopyta
Rys.3 Na tym termicznym obrazie przednie lewe kopyto pokazuje większe ciepło, które okazało się być spowodowane przez ropień.

FLIR iBros badanie termograficzne koni kopyto
Rys.4 Obraz termiczny z prawej strony przedstawia kopyta konia po leczeniu, oba są w tej samej temperaturze.

W internecie udostępniane informacje są łatwo dostępne, Boyes był w stanie wykonać kilka bardzo dokładnych badań na temat termografii koni za pomocą dostępnych urządzeń. "Byłem zaskoczony, że ta technologia stała się tak niedroga w ostatnich latach. Moje badania wskazują również, że wielu profesjonalnych i wiarygodnych termograferów obecnie pracuję w przemyśle związanym z koniami z zastosowaniem kamery termowizyjnej FLIR. Zamówiłem kamery termowizyjne FLIR E60bx ponieważ oferują najlepszą jakość aparatu, na jaką mogłem sobie pozwolić budżetowo, a co więcej nadal jestem bardzo zadowolony z mojego wyboru. Termografia daje mi świeże, dobrze wyostrzone obrazy i pokazuje mi najmniejsze zmiany temperatury na ciele koni. Jest to kamera, którą dażę zaufaniem do dokładnych pomiarów termicznych za każdym razem."

Lokalne wsparcie

Dla Boyes wsparcie lokalnego dystrybutora produktów FLIR H Rohloff (Pty) Ltd, z siedzibą w Johannesburgu, było bardzo ważne. "Moja siedziba jest na samym krańcu Afryki Południowej, więc jesteśmy bardzo daleko od zakładów europejskich i północnoamerykańskich firmy FLIR. W mało prawdopodobnym przypadku problemu technicznego mojego sprzętu, byłoby finansową katastrofą jeśli problem nie mógłby zostać szybko rozwiązany. Mając lokalnego agenta jestem przekonany, że zespół FLIR będzie w stanie wymyślić plan, aby szybko otrzymać i naprawić mój sprzęt. "

FLIR iBros badanie termograficzne kręgosłup konia png
Rys.5 Ten obraz termiczny pokazuje ''wspomniany ból'' w okolicy szyi, który powstał w wyniku ropniaka w przednim kopycie.

FLIR iBros badanie termograficzne tors konia png
Rys.6 Skanowanie cieplne krwiaka, powstałego w wyniku przesunięcia w skoku podczas zawodów.

Dla termografii koni trzeba więcej niż tylko bardzo dobrej kamery.  "Znajomość fizjologii koni jest bardzo ważna, aby być w stanie dokładnie zinterpretować obrazy termiczne. Pracuję z końmi w taki, czy inny sposób przez ponad 40 lat. W tym czasie poznałem tajniki anatomii konia oraz jego fizjologi i zyskałem wiele praktycznych doświadczeń w leczeniu rozmaitych urazów. To daje mi doskonałe zrozumienie, na co zwracać uwagę przy interpretacji radiometrycznych obrazów koni. Istnieją również czynniki, które mogą tworzyć fałszywe odczyty lub "artefakty", takie jak ręce ludzkie dotykające skóry zwierzęcia, taki przykład w celu potwierdzenia. Należy upewnić się, że możliwość artefaktów wpływających na wyniki jest unikniona. "

Lokalny interes związany z termowizją koni szybko rośnie, według Boyes. "TermoZone świadczy usługi termowizyjne dla hodowli, wyścigów i końskich szlaków przemysłu, jak i dla wielu graczy polo, pokazów skoczków, kierowców karet i jeźdźców wytrzymałościowych w tej dziedzinie. Niektóre z naszych miejscowych kowali, fizjoterapeutów koni i hodowców bydła również korzystają z usług termograficznych ThermaZone. Chociaż termowizja koni jest stosunkowo nowa w RPA w branży jeździeckiej, znaczne inwestycje finansowe, które zrobiłem na sprzęt i szkolenia termograficzne już przynoszą liczne owoce."

 

Odzwiedź iBros technic na Forum Wentylacja – Salon Klimatyzacja 2020

 

 

W dniach 3-4 marca 2020 roku firma iBros technic weźmie udział w 18 Edycji Targów Forum Wentylacja – Salon Klimatyzacja 2020, które są najważniejszym wydarzeniem w branży wentylacyjnej, klimatyzacyjnej i chłodniczej.

 

 

 

Wszystkie zainteresowane osoby zapraszamy do odwiedzin stoiska nr 119 firmy iBros technic. Podczas targów możliwe będzie obejrzenie i testowanie najnowszych kamer termowizyjnych marki FLIR Systemsbalometru i mierników do regulacji instalacji wentylacyjnych TSI Incorporated, jak również innych, wybranych narzędzi kontrolno-pomiarowych dostępnych w ofercie iBros technic (w tym kamery inspekcyjne, pirometry termowizyjne, wilgotnościomierze).

iBros technic będzie na najbliższych targach promował i prezentował mierniki TSI, kamery termowizyjne FLIR Systems, przetworniki i czujniki Produal oraz inne.

Będzie nam miło spotkać się i porozmawiać z Państwem.

Zapraszamy!

 

Miejsce targów:  

Centrum Targowo-Kongresowe Global EXPO

ul. Modlińska 6D,  03-216 Warszawa

Nr stoiska iBros technic: 119

 

Godziny:

3 marca 2020: godz. 09.00 – 17.00

4 marca 2020: godz. 09.00 – 16.00

 

IBROS TSI FLIR PD 2018 1000px

 

©iBros. Wszelkie prawa zastrzeżone.

Top Desktop version